Использование воздушных шаров в настоящее время. Как управлять воздушным шаром

Сегодня тепловые шары и дирижабли в основном используются для отдыха. Прогулка на воздушном аппарате - любимое времяпрепровождение сотен тысяч людей по всему миру. Только в США насчитывается 7500 воздушных шаров, в России же подобных летательных аппаратов около 300.

Ежегодно проходят около 400 самых разных воздухоплавательных фестивалей. Это и Бристольская воздухоплавательная фиеста, и фестиваль воздушных шаров «Большой медведь» в Нью-Джерси, и праздники воздушных шаров в Лондоне, Альбукерке, Шамбле. Особую радость зрителям подобных мероприятий приносит феерическое представление воздушных шаров «Ночное свечение». В вечернее время пилоты поднимаются в небо и меняют положение горелок так, что воздушные шары начинают светиться. По командам координатора пилоты координировано тушат и зажигают горелки, создавая в темном небе фантастические образы.

Воздухоплавательные праздники устраивают и в России. В последние годы фестивали воздухоплавания проходили в Перми, Ярославле, Казани, Абинске, Ессентуках, Переяславле-Залесском. Летом 2005 года жители 24 городов России стали участниками акции компании «МегаФон» «Поднимись над облаками!». Гвоздем программы был запуск самого большого в России теплового дирижабля (длиной 41 м и диаметром 13 м). Одновременно на земле проходила шоу-программа «МегаФона»: интерактивные конкурсы, различные соревнования с вручением тематических призов, а также выступления известных музыкальных коллективов: как местных, так и общероссийского уровня. Победители конкурсов получали уникальную возможность совершить небольшое путешествие в корзине воздушного шара или в гондоле дирижабля. Особое место тепловые аэростаты занимают в современном спортивном мире. Во время соревнований по воздухоплаванию команды выполняют самые затейливые трюки. Одно из известнейших упражнений называется «заяц и собаки». Шар-«заяц» пытается улететь от аэростатов- «собак», которые его преследуют. «Заяц» старается оторваться от соперников и, приземлившись, рядом со своей корзиной выложить цель в виде креста. «Собаки» пытаются поразить цель, с высоты бросая в нее небольшие мешочки с песком. Эти и другие воздухоплавательные задания выполняют также участники чемпионатов мира среди тепловых воздушных шаров, проводимых с 1973 года. В прошлом году в японском городе Точиги прошел уже 17-ый чемпионат мира в этой дисциплине. В соревновании приняли участие спортсмены из разных уголков планеты: Германии и России, США и Кореи, Франции и Финляндии, ЮАР и Австралии. В состязании успешно выступил и молодой российский воздухоплаватель Алексей Медведский. А чемпионом мира стал американец Джон Петрехн.

Герои мирового воздухоплавания

За более чем двухвековую историю воздухоплавания десятки людей из самых разных стран мира посвятили аэронавтике свои жизни. И говоря о героях воздухоплавания, нельзя не вспомнить в первую очередь братьев Монгольфье, французских изобретателей воздушного шара. Старший из братьев, Жозеф Мишель (1740-1810), в тринадцать лет бросил школу и сбежал из дома, впоследствии заинтересовался математикой и химией и даже организовал собственную лабораторию. Его брат Жак Этьен (1745-1799) был преуспевающим инженером и занимался производством бумаги. Первую модель будущего аэростата («монгольфьера») братья смастерили в 1782 году. Это был небольшой шар с оболочкой из шелка, имеющей внизу отверстие. Под отверстием изобретатели жгли бумагу, воздух внутри шара прогревался, и шар поднимался к потолку помещения, где проводился эксперимент. Затем братья сделали несколько оболочек больших размеров и начали запускать шары уже на открытом воздухе. Публике свое изобретение братья впервые показали в июне 1783 года во французском городке Анноне. Беспилотный воздушный шар с оболочкой из грубого льняного полотна, обклеенного бумагой, поднялся в небо и достиг высоты около 1800 м. Во второй полет, состоявшийся в сентябре 1783 года, аэростат отправился с «экипажем» - овцой, петухом и уткой. А спустя два месяца в небо впервые поднялись люди - Жан-Франсуа Пилатр де Розье и маркиз дАрланд.

Свое имя в историю воздухоплавания вписал и соотечественник братьев Монгольфье Жан-Пьер Бланшар (1753-1809). Долгое время этот изобретатель безуспешно пытался построить самолет, но после появления воздушных шаров занялся созданием аэростатов. В январе 1785 года Бланшар вместе с американским врачом Джоном Джеффрисом стали первыми людьми, перелетевшими через Ла-Манш. Путешественники поднялись в небо в британском порту Дувр, а через 2,5 часа уже приземлились в лесу близи французского города Кале. Бланшар был первым человеком, поднявшимся в воздух в Америке. Одним из свидетелей полета французского изобретателя был первый президент США Джордж Вашингтон.

Среди американских воздухоплавателей следует отметить заслуги современного аэронавта и путешественника Стивена Фоссета (родился в 1944 году). В 1995 году американец совершил первое в мире одиночное путешествие на воздушном шаре через Тихий океан. А летом 2002 года он стал первым человеком в мире, пролетевшим на воздушном шаре в одиночку и без остановок вокруг земного шара. Его кругосветное путешествие началось и закончилось в Австралии и заняло 13 дней 8 часов и 33 минуты. За это время Фоссетт пролетел более 33 тысяч километров. Американский воздухоплаватель вписал свое имя и в мировые рекордсмены по скорости полета. В октябре 2004 года на огромном дирижабле «Цеппелин НТ» он развил скорость в 115 км/ч.

Неоднократно рекорды в скорости, продолжительности и набранной высоте ставили и российские пилоты. Значительный вклад в развитие мирового воздухоплавания внесли и инженеры нашей страны. Выдающимся российским ученым является Николай Егорович Жуковский (1847-1921). Жуковский был одним из основоположников аэродинамики. Его работы по «теории летания» неизменно получали одобрение и высокие оценки мирового научного сообщества. В одной из своих речей «О воздухоплавании» ученый предсказывал: «Человек не имеет крыльев и по отношению веса своего тела к весу мускулов в 72 раза слабее птицы, но я думаю, что он полетит, опираясь не на силу своих мускулов, а на силу своего разума».

Помимо научных трудов «отец русской авиации» собирал всевозможные летающие модели, воздушные змеи, заводные бабочки и т.п. Жуковский также - постоянный делегат российский делегаций на ведущих мировых встречах воздухоплавателей. Так, осенью 1906 года он представлял Россию на Воздухоплавательном съезде в Милане. Ранее, в сентябре 1900 года, он участвовал в Первом международном воздухоплавательном конгрессе в Париже и совершил полет на воздушном шаре. В одном из писем родным он писал: «Вчера вечером был конкурс баллонов (кто пролетит всего далее) в Венсеннском лесу. Конкурс производился от Парижского аэроклуба, и в нем принял участие 21 шар, между которыми были громадные… Зрелище небывалое, все небо заполнилось летящими шарами».

Важную роль Жуковский сыграл и в пропаганде знаний о воздухоплавании. В 1904 году он создал воздухоплавательную секцию в Московском обществе любителей естествознания, антропологии и этнографии. В 1910 году при непосредственном участии ученого в Московском высшем техническом училище была открыта аэродинамическая лаборатория. А в конце 1918 года Жуковский основал Центральный аэрогидродинамический институт.


Воздушные шары после многих десятилетий практически полного забвения постепенно возвращаются в нашу жизнь. И речь идет не только о развлекательных и спортивных летательных аппаратах, но также об их промышленном и научном использовании. В этом обзоре мы собрали 5 наиболее наглядных примеров того, как в современном мире используются воздушные шары , а также в каких направлениях они могут быть полезны в будущем.


Группа студентов-техников из Бостона мечтает о частном освоении Космоса. Конечно, они не обладают миллиардами долларов, которые можно внести в качестве инвестиций в разработку соответствующих технологий, как это делают бизнесмены Илон Маск и Ричард Брэнсон, следовательно, и масштабы их деятельности куда более скромные. Однако они уже могут похвастаться несколькими успешными запусками летательных аппаратов на большую высоту.



К примеру, в 2014 году студенты совершили несколько при помощи воздушных шаров. Они прикрепили мобильный телефон со включенной камерой к аэростатам и отпустили их. Шары поднялись на высоту 29 километров, где и лопнули, раздираемые изнутри высоким, по сравнению с внешним, давлением. Упавший телефон они затем нашли благодаря включенному датчику GPS.



Конечно, 29 километров – это далеко не Космос и даже не суборбитальное пространство. Однако с каждым новым запуском высота подобных полетов увеличивается – студенты постоянно модифицируют свои аэростаты. Пока что их задача-максимум – достигнуть отметки 50 км.

Идейно связан с манипуляциями бостонских студентов и вполне «серьезный» проект с названием Bloostar от испанской компании Zero2Infinity. Он подразумевает запуск на орбиту искусственных спутников Земли при помощи воздушных шаров.



Конечно, создатели понимают, что из-за увеличивающейся с каждым последующим километром набора высоты разницы давления внутри и снаружи воздушного шара, аэростаты не могут подняться до отметки 100 км и выше. Однако это и не нужно. Проект подразумевает использование воздушных шаров для того, чтобы космические аппараты преодолевали земное притяжение.



Воздушные шары будут поднимать их на высоту 20 километров, после чего аппараты отделятся и дальше полетят самостоятельно, используя традиционную ступенчатую ракетную систему. Эта технология позволит значительно сэкономить ресурсы при выводе спутников на орбиту, ведь больше всего топлива расходуется ракетами при старте, в момент отрыва от земной поверхности.



Технология Bloostar позволит запускать на высоту до 600 километров объекты весом до 75 килограммов.

Еще один перспективный проект от испанской компании Zero2Infinity. В рамках этой технической инициативы она планирует создать воздушные шары с прикрепленными герметичными капсулами, рассчитанными на четырех человек.



Аэростаты Bloon смогут подниматься на высоту до 40 километров. Этому показателю, конечно, далеко даже до уровня суборбитальных полетов, которые происходят в районе отметки 100 км. Однако и этой высоты пассажирам будет достаточно для того, чтобы почувствовать близость Космоса, а себя – практически настоящими астронавтами.



Поднявшись на максимальную высоту, аэростаты от Zero2Infinity смогут находиться на ней на протяжении трех часов (сравните с несколькими минутами при полетах на шаттлах от Virgin Galactic), а затем еще плавно спускаться на поверхность Земли в течение пяти-шести часов. При этом сам подъем будет происходить в режиме воздушного шара, а спуск – в режиме параплана.



Во время полета пассажиры смогут любоваться удивительной красотой планеты Земля, а эти виды нельзя наблюдать даже с борта авиалайнеров во время трансконтинентальных полетов, ведь аппараты Bloon поднимаются в четыре раза выше. При этом стоимость такого путешествия будет составлять пару десятков тысяч американских долларов. Для сравнения, цены на полеты с Virgin Galactic стартуют от 250 тысяч.



В конце 2014 года группа ученых и инженеров из NASA со станции Мак-Мердо в Антарктиде запустила первый экземпляр нового поколения воздушных шаров, научный аэростат с мксимальным объемом 538 тысяч кубических метров.



Ожидается, что такого рода воздушные шары станут основой для научных изысканий в ближайшие десятилетия. Ведь они могут поднимать груз весом 2300 килограммов на высоту до 33 километров. Данный аэростат может беспрерывно находиться в небе в течение примерно ста дней, притом, что современный рекорд максимальной длительности полета составляет 55 суток.



Первый научный воздушный шар нового поколения поднял на высоту гамма-лучевой телескоп COSI, который способен обнаружить в небе участоки, излучающие гамма-лучи, изучение которых позволит разгадать огромное количество космических тайн.

По замыслу известного дизайнера Оливье Гроссетета, силы воздушных шаров вполне хватает на то, чтобы держать небольшой пешеходный мост, раскинувшийся над озерцом в одном из парков при поместье в северо-западной Англии.



Pont de Singe или «Обезьяний мост» - это один из самых необычных мостов во всем мире. Ведь он держится над водой не при помощи массивных основ, а только лишь за счет трех больших воздушных шаров, прикрепленных к конструкции. При этом чтобы мост не улетел, он фиксируется к земле при помощи нескольких привязанных мешков с песком.

Правда, Pont de Singe – это лишь декоративное украшение парка. Никакой практической функции он не выполняет. Хлипкая конструкция не предназначена для того, чтобы по ней ходили люди – он тут же уйдет под воду под массой их тел.



Мост Pont de Singe находится в так называемой «японской» части парка английской усадьбы. Эта конструкция, по замыслу автора, стремится оживить поэтичность и мечтания в суматохе современной жизни.

: Частный Космос: кто и зачем тратит деньги на личные ракеты и космические челноки.

Воздух необходим всем живым существам для дыхания и создания органических веществ, также он защищает Землю от космической радиации. Благодаря ветру, влага и тепло разносятся по всей поверхности планеты, и если бы не было ветра, суша превратилась бы в безжизненную пустыню. Но на этом польза воздуха не заканчивается, многие просто не знают, как человек использует свойства воздуха, а между тем, он проник во многие сферы человеческой жизни.

Использование свойств воздуха человеком

Ещё в древности люди изобрели парус для путешествий по океану и ветряное колесо, которое помогало в работе по хозяйству. Но оно не потеряло своей актуальности и в наше время. Теперь его используют в ветряных электростанциях, что является самым чистым способом получения электричества, поскольку окружающая среда при этом не загрязняется.

Не смотря на то, что воздух очень лёгкий, он тоже имеет вес, который может вытолкнуть более легкие предметы и газы. Благодаря этому его свойству, люди выпускают шар-зонд, заполненный водородом, который несёт на себе приборы, сообщающие о погоде в верхних слоях атмосферы. Воздух, как и вода, имеет свойство расширяться при нагревании. От чего он становится легче и поднимается вверх. Именно это его свойство использовали первые воздухоплаватели, летавшие на воздушных шарах, которые заполнялись, горячим воздухом.

Воздух менее плотный, нежели вода. Но при развитии большой скорости, на него можно опереться. Открытие данного свойства позволило создать самолёты и вертолёты, которые надежнее летательных шаров. Именно за счет малой плотности воздуха, человек имеет возможность перемещаться по нему во много раз быстрее. В связи с тем, что воздух обладает низкой плотностью, он плохо проводит тепло. Благодаря этому, человек, надевает теплые вещи, тем самым окружая себя воздушной оболочкой и ему не холодно, также как и нахохлившимся птицам и зверям. Теперь вы знаете, как используют свойства воздуха, и непременно воспользуетесь его благами в собственных целях. А если вы хотите ознакомиться с ними более подробно, то по ссылке можно прочить статью - «

Что вы знаете о воздушных шариках? Ну конечно то, что они яркие, красивые и дарят море позитива. А где их можно применить? Сразу возникают ассоциации с какими-то торжественными событиями. А вот иногда некоторым вещам можно найти очень даже необычное применение. Сейчас мы рассмотрим это на реальных примерах.

1. На шариках можно летать!
Кто же в детстве не мечтал взлететь в небо, держа в руках воздушные шары. А вот профессиональный лыжник и бейсджампер Эрик Ронер (Erik Roner), уроженец Северной Калифорнии, превратил мечту в реальность. Привязав к летнему лежаку 90 воздушных шаров с гелием , он поднялся на высоту 2,5 км. С собой экстремал прихватил ружье и парашют.


Достигнув нужной высоты, Эрик Ронер устроил стрельбу по шарам и довольно быстро отправился в свободное падение. Затем он открыл парашют и удачно приземлился. Невероятно смелый поступок вы сможете посмотреть на видео.

2. Скульптуры из воздушных шаров
Американский скульптор Ларри Мосс (Larry Moss) придумал собственный проект «Аэригами» («Airigami»). Это довольно креативный и нестандартный подход к искусству. Трудно поверить, что из воздушных шариков можно создавать копии картин таких великих художников как Леонардо да Винчи, Сандро


Боттичелли, Гранта Вуда. Но как видно, нет ничего невозможного.


Копия картины «Американская готика» Гоанта Вуда


Копия картины «Витрувианский человек» да Винчи

Еще Ларри Мосс разработал целую коллекцию одежды из воздушных шариков.


Также смелый экспериментатор создал самую большую скульптуру из шариков, которую даже занесли в Книгу рекордов Гиннеса. Вот уж действительно полет фантазии не имеет границ, а иногда взгляд с другого ракурса на привычную вещь дарит ей новую жизнь.

3. Чехол для мобильного телефона из необычного материала
Не прилагая особых усилий, из воздушного шарика может получиться настоящий чехол для смартфона. Тем более такой чехол не требует больших денежных затрат и хоть каждый день можно менять цвет. Сделать это можно в 3 этапа:


1. Надуваете воздушный шарик, зажимаете выходное отверстие и кладете на него телефон.
2. Начинаете потихоньку выпускать воздух, при этом легонько надавливая на смартфон.
3. Воздух выходит и шарик плотно облегает гаджет.

4. Воздушные шары в виде мясных изделий
Япония - поистине удивительная страна. Великое множество изобретений было придумано именно там. И вот японцы придумали еще одну необычность - воздушные шарики Meat Balloons, которые выглядят как настоящие мясные изделия.
Создатели уникальных шариков ожидают, что их будут применять в витринах магазинов, как демонстрационный продукт. Согласитесь, это очень удобно, так как такие изделия не привлекают насекомых и не портятся.

5. Использование шарика в приготовлении сладостей
Из шоколада можно приготовить вкусные чашечки. Для этого вам понадобится сам шоколад и воздушный шарик, размер которого вы подбираете по собственному желанию. Сначала делаем основание чашки, чтобы была устойчивость, для этого выливаем ложку шоколада на поверхность. Затем окунаем шар в горячий шоколад и ставим на уже готовое основание. Даем время остыть и чашка готова. Такую емкость можно использовать для наполнения десертами.

6. Контейнер для воды
Отдыхая на даче, вы нарвали красивейший букет цветов и хотите увезти его домой. Как же сделать так, чтобы цветы по дороге не завяли? Оказывается очень просто. Нужно взять плотный воздушный шарик и использовать его как емкость с водой. Для этого верх можно обрезать.
А также можно изготовить необычную эксклюзивную вазу. Вам понадобится банка и воздушный шарик. Шар поместите в банку или бутылку, закрепите края на горлышке. И все ваза готова. Наливайте воду и любуйтесь цветочной композицией.

7. Охладители продуктов
В жару так хочется выпить чего-нибудь холодненького. Если вы поехали на пикник с друзьями, то холодильника на природе, к сожалению, нет. Подготовьтесь заранее к поездке и заморозьте воду в воздушных шариках. Теперь и продукты не испортятся, и прохладительные напитки будут в достаточном количестве.

Возраст: 13 лет

Место учебы: МБОУ СОШ с. Райманово

Город, регион: Город Туймазы, регион 102, Республика Башкортостан.

Руководитель (Газизуллина Анджела Фанильевна, Школа с. Райманово.)

Историко-исследовательская работа " Воздушные шары: наука, спорт, туризм, развлечение…

Я думаю о нём, о голубом небе. О чистом и светлом, без единого облачка. Я восхищаюсь им, мирным голубым небом, от него веет спокойствием и безмятежностью.

Я начала свою работу с этих слов потому-что человека всегда тянуло в небо. Дажо в древности человек стремился к нему, а теперь человек достигнул своей цели.

Ну а воздушные шары и стали первым путём в небо.

Актуальность данной работы заключается в том, что практические возможности воздушных шаров уже давно нашли очень широкое применение в различных отраслях. Например, в туризме, спорте и различных аттракционах, а так же для военных целей и научных метеорологических наблюдений.

Цель работы: Всесторонне, в различных аспектах, рассмотреть применение воздушного шара, как простейшего летательного аппарата, а так же самим изготовить миниатюрную действующую модель.

В этой работе поставлены следующие задачи:

1. Изучить литературу по теме.

2. Изучить особенности конструкции воздушного шара.

3. Исследовать принцип полета воздушного шара.

В работе использовались следующие методы:

1. Ретроспективное изучение литературных источников.

2. Выполнение простейших аэродинамических расчётов.

3. Изготовление и опытные запуски воздушного шара в миниатюре с последующей доводкой и регулировкой.

Объектом исследования стали воздушные шары различных типов и конструкций.

Предмет исследования - использование воздушных шаров в различных отраслях.

Глава I . Воздушный шар и воздухоплавание

I .1. История развития воздушных шаров

Полеты на воздушном шаре были красочно описаны Жюль Верном в его фантастических рассказах. Многие из его предложений стали былью, вошли в нашу жизнь и превратились в обыденную реальность.

Воздушный шар, а точнее — аэростат, был первым летательным аппаратом, позволившим человеку оторваться от земли. Принцип действия аэростата основан на законе Архимеда, причем подъемная сила летательного аппарата создается за счет разности плотностей воздуха и газа, наполняющего оболочку. Более легкий и менее плотный газ стремится вверх в область равных плотностей, увлекая за собой весь летательный аппарат.

Слово «аэростат» составлено из греческих слов «аэро» и «статос», что означает «воздух» и «неподвижный» . Этот термин применяется, как официальный научный, технический и профессиональный. В русском же языке прочно укоренилось словосочетание «воздушный шар», которое тоже имеет право на существование. Однако название «воздушный шар» принадлежит и резиновой игрушке, потомку древнего пузыря, наполняемого иногда обычным воздухом, не имеющим подъемной силы. Поэтому в отношении летательного аппарата наиболее приемлемо слово «аэростат».

По техническому решению аэростаты делятся на два основных типа - газонаполненные и тепловые .

Газонаполненные аэростаты изобрел французский профессор Жак-Александр-Сезар Шарль. Первый беспилотный полет аэростат Шарля совершил 28 августа 1783 года. Первый пилотируемый свободный полет на газонаполненном аэростате состоялся 1 декабря 1783 года, пилотами были сам профессор Шарль и механик Робер. В честь изобретателя газонаполненные аэростаты некоторое время называли шарльерами. Оболочка газонаполненного аэростата наполнялась водородом, иногда - более дешевым метаном. Сейчас для этого типа аэростатов применяется гелий .

Иначе устроен тепловой аэростат, изобретателями которого являются французские фабриканты братья Жозеф и Этьен Монгольфье. Эти аэростаты в честь изобретателей называют монгольфьерами. У монгольфьеров оболочка наполнена горячим воздухом или паровоздушной смесью. Для поддержания высокой температуры воздуха внутри оболочки монгольфьеры оснащены горелками, работающими чаще всего на природном газе .

Увлекшись естественными науками, братья Монгольфье 5 июня 1783 года подняли в небо первый беспилотный тепловой аэростат. 19 сентября того же года ими был осуществлен подъем на монгольфьере животных. На высоту около полукилометра поднялись баран, утка и петух. Полет прошел успешно, возможность безопасного пребывания человека в небе была доказана. Первым человеком, кто совершил полет на воздушном шаре, был Джин-Франкос. Это произошло 15 октября 1783 г. и стало началом эры воздухоплавания.

Подготовка пилотируемого полета потребовала от братьев Монгольфье оснащения своего аэростата топкой. Пока шли эксперименты, Этьен Монгольфье и молодой физик Пилатр де Розье осуществляли подъемы на привязном монгольфьере. 21 ноября 1783 года состоялся первый свободный пилотируемый полет аэростата. На борту находились Пилатр де Розье и маркиз д‘ Арланд. Пилоты регулировали температуру воздуха в оболочке, подбрасываю солому в топку. Полет продолжался около двадцати минут и прошел благополучно. Таким образом, приоритет в изобретении пилотируемого воздушного шара принадлежит братьям Этьену и Жозефу Монгольфье .

Конструкция воздушного шара мало изменилась с момента его изобретения до настоящего времени. Воздушный шар почти всегда имеет сферическую или грушевидную форму. Оболочка воздушного шара представляет собой огромный мешок из ткани, покрытый каучуком, обеспечивающим эластичность и его герметичность. До середины 19 века воздушные шары были не управляемые. Поднявшись в воздух, шар просто дрейфовал по ветру. Горячий воздух остывал, просачивался через оболочку, шар терял высоту. Регулирование высоты полета осуществлялось сбросом балласта (мешки с песком), загруженного перед началом полета в гондолу или выпуском воздуха через клапан. Были предприняты попытки устройства регулируемых парусов, но это успеха не принесло.

В период франко-прусского конфликта в 1870-71 гг. 65 воздушных шаров были использованы для переброски пассажиров и груза из осаженного Парижа. В 1875 г. были предприняты попытки пересечь на воздушном шаре пролив Ла-Манш. Однако это мероприятие имело сомнительный успех. Пилоты были вынуждены выбросить из гондолы все оборудование, снаряжение и даже одежду. В начале 20 века воздушный шары стали использовать для научных целей при изучении стратосферы, и в 1901 г. был совершен первый высотный подъем.

I .2. Применение воздушных шаров

Современные аэростаты - это воздушные шары, которые поднимаются вверх благодаря нагретому воздуху. Их оболочка изготовлена из синтетического материала со специальным покрытием, которое обеспечивает воздухонепроницаемый эффект. Также аэростат укомплектован блоком горелок, которые работают на пропане и бутане. Кроме этого воздушный шар оснащен барометрическими приборами, а также вентилятором для предварительного поступления в оболочку холодного воздуха.

За всё время своего существования воздушные шары применялись и до сих пор используются для различных военных и научных целей, для спорта, туризма и развлечений.

  • Привязные шары для военных целей разделяются на крепостные и полевые; те и другие отличаются только размерами и служат для осмотра расположения своих и неприятельских войск, их расположения и движений. Иногда они служат для корректирования стрельбы артиллерии. Такие аэростаты снабжаются телефонами, проводники которых находятся в связи с штабами главных начальников. Привязные канаты крепятся к шару помощью трапеции, как видно на чертеже, что обусловливает вертикальное положение корзины при любом уклоне шара и не допускает вращения корзины.
  • Привязные шары для метеорологических и фотографических целей вводятся в последнее время в разных государствах и служат метеорологам высокими пунктами для научных наблюдений. Шары эти имеют небольшую емкость и поднимают одни записывающие метеорологические инструменты.
  • Привязные шары для подъемов публики в последнее время служат непременною принадлежностью всякой большой выставки и делаются обыкновенно значительного объема, не менее 8000 куб. м. Сегодня баллонинг - это уникальная и доходная отрасль системы предприятий и уникальный, привлекающий внимание всех без исключения метод аттракции. Катание на воздушных шарах - элитное развлечение для состоятельных туристов. Так как это дело обыкновенно имеет чисто коммерческую подкладку, то зачастую предприниматели для удешевления своего предприятия строят шары из материалов не очень высокого качества, почему и поднимают публику только в исключительно хорошую погоду, опасаясь за целость своего аэростата и особенно за дорогостоящий газ (обыкновенно водород). Почти все выставочные аэростаты кончали тем, что рвались. Вот почему не следует допускать эксплуатацию выставочных шаров дольше шести месяцев, считая содержание их в наполненном виде. Шар, выслуживший этот срок, уже не представляет гарантий безопасности.
  • Светящиеся сигнальные шары представляют собою небольшие шарльеры, сделанные из прозрачной легкой материи. Такой шар рассчитывается на подъем электрического двужильного кабеля и нескольких ламп с накаливанием. Внизу ставится динамо-машина с двигателем или батарея из гальванических элементов или электрических аккумуляторов, назначаемых для питания ламп; там же имеется особый коммутатор в роде телеграфного ключа Морзе для замыкания и размыкания тока и подачи сигналов. Лампы подвешиваются или внутри шара, тогда весь шар светится, или подвешиваются под шаром. Иногда огни ламп делаются разноцветными. Высота подъема обыкновенно не превышает 200 м.
  • Пробные воздушные шары — это маленькие шарики, не больше одного метра емкости, обыкновенно из пролакированной бумаги, наполняемые газом. Служат для определения направления ветра и пускаются перед полетом. Обыкновенно делаются цветными и снабжаются лентами из бумаги. Для метеорологических целей к такому шарику подвязывается черная лента определенной длины с обозначенными поперечными, значительно уширенными концами. Зная длину ленты, судят об удалении аэростата, измеряют в то же время углы, составляемые с горизонтом, помощью теодолита и направление по компасу, легко выводят направление и скорость движения воздушных течений на разных высотах.
  • Воздухоплавание как спорт начало развиваться в конце 19 столетия. Конструкции воздушных шаров совершенствовались. Постепенно стали устанавливать рекорды дальности и высоты полетов. Развитие другой летательной техники оставило аэростаты привилегией спортсмено

Глава II .Конструкция воздушного шара II .1. Расчёты миниатюрной модели шара Широкое распространение в быту лёгких пластиковых паке-тов, газовых зажигалок и стеариновых свечей позво-ляет надеяться на возможность осуществления полёта воздушно-го шара в домашних условиях. Теоретически обосновать такую возможность в состоянии даже ученик средней образовательной школы, начавший изучать условия плавания тел из курса физики. Как уже отмечалось в первой главе, принцип действия аэростата основан на законе Архимеда. Измерения показали, что удель-ная подъёмная сила µ горячего воз-духа при 100 °C составляет 0,278 кг/м. Это значит, что при температуре атмосферы 0 °C один кубический метр воздуха, нагретого до 100°C, способен поднять груз массой 278 г.

Обозначим объём шара V, плотность относительно холодно-го воздуха комнаты P 1 и нагрето-го воздуха в оболочке шара P 2. Сила Архимеда, действующая на шар, равна весу вытесненного ша-ром холодного воздуха f 1 = P 1 gV, а сила тяжести, действующая на нагретый воздух в шаре, равна f 2 = P 2 gV. Тогда подъёмная сила шара составляет

f=f 1 -f 2 =(P 1 -P 2)gV (1)

В нашем распоряже-нии имеется тонкий полиэтилено-вый пакет размером 30x40 см. Ес-ли такой пакет наполнить воздухом, то получится тело, которое прибли-жённо можно заменить параллепипедом с основанием 15x15 см и вы-сотой около 40 см. Объём надутого пакета примерно равен 0,009 кубических метра, или 9 литров. Согласно табличным данным, плотность сухого воздуха при нормальном давлении и температуре 20 °С составляет 1,205 кг/м, а при100 °С равна 0,946 кг/м. Подставляя эти значения в фор-мулу (1), получаем, что подъёмная сила проектируемого воздушного шара может достичь величины 2,28 10 Н. Это значит, что шар сможет поднять груз (считая и его обо-лочку) массой 0,0233 кг (23 г.)

Проверить выполненный расчёт можно, если воспользоваться при-ведённым выше значением удельной подъёмной силы горячего воздуха: шар объёмом 9 л, воздух в котором нагрет до 100°С, сможет поднять груз массой m=µV=0,0255кг. Это неплохо согласует-ся с полученным выше значением, особенно если учесть, что наш рас-чёт проведён для перепада темпера-тур не 100°С, а 80°С.

Итак, чтобы воздушный шар по-летел вверх, сила тяжести, дейст-вующая на оболочку шара и другие его элементы, должна быть меньше силы Архимеда.

Монгольфьер летает потому, что плотность нагретого воздуха внутри шара меньше, чем холодно-го снаружи.

Чтобы понять, почему плот-ность воздуха зависит от его тем-пературы, нужно вспомнить газо-вые законы.

Согласно закону Гей-Люссака объём V данной массы m газа при постоянном давлении прямо пропор-ционален его абсолютной темпера-туре T:

Отсюда следует, что плотность газа P=m/V при неизменном давлении обратно пропорциональна абсо-лютной температуре: PТ = const. Тогда для двух разных значений температуры T 1 и T 2 отношение соответствующих плотностей P 1 и P 2 равно:

P 1 /P 2 = T 2 /T 1 (3)

Изменение плотности газа можно записать в виде:

∆P = P 1 -P 2 = P 1 (1-P 2 /P 1)

Учитывая соотношение (3), отсюда получаем, что изменение плотности газа при нагревании его от темпера-туры T 1 до T 2 = T 1 + ∆T составляет

∆P = P 1 (1-T 1 /T 2) = P 1 *∆T/T 2 (4)

Поэтому воздух объёмом V, на-гретый до температуры Т 2 , при тем-пературе окружающего воздуха Т 1 согласно закону Архимеда (1) в со-стоянии поднять груз массой

m= ∆P*V = P 1 *∆T/T 2 *V (5)

Подстановка в последнюю фор-мулу значений P 1 =1,205 кг/м, V= 0,009м 3 Т 2 =373 К и ∆T = 80 К даёт значение m= 0,0233кг, ко-торое вполне согласуется с оценка-ми, полученными выше.

Воздушный шар, в отличие, на-пример, от дирижабля, снизу от-крыт. Это отверстие совершенно не-обходимо, иначе на большой высоте, где давление внешнего воздуха ма-ло, внутреннее давление разорвёт оболочку шара.

В случае дирижабля подъёмная сила Архимеда обусловлена, оче-видно, разностью давлений на верх-нюю и нижнюю его поверхности. А за счёт чего появляется подъёмная сила воздушного шара?

Нетрудно сообразить, что в воз-душном шаре или аэростате подъ-ёмная сила возникает за счёт разно-сти давлений извне и изнутри на одни и те же участки его оболочки. Вблизи нижнего отверстия аэроста-та эта разность давлений равна нулю, так как внутренний объём аэро-стата свободно сообщается с атмо-сферой. В верхней части оболочки указанная разность давлений дости-гает максимума [приложение 1].

Воздушные шары в туризме и в развлечении, используются по разному некоторые для того чтобы увидеть с неба разные архитектурные сооружения, ну некоторые чтобы просто развлечься, чтобы набраться эмоций.

Воздушные шары это здорово.

Сайт Воздушные шары