Не ветер а парус определяет направление. Почему парусник может плыть против ветра? Мы хотим уделить внимание актуальности обучения новичков

4.4. Действие ветра на парус

На шлюпку под парусом оказывают влияние две среды: воздушный поток, действующий на парус и надводную часть шлюпки, и вода, действующая на подводную часть шлюпки.

Благодаря форме паруса даже при самом неблагоприятном ветре (бейдевинд) шлюпка может двигаться вперед. Парус напоминает крыло, наибольший прогиб которого удален от передней шкаторины на 1/3-1/4 ширины паруса и имеет величину 8-10% ширины паруса (рис. 44).

Если ветер, имеющий направление В (рис. 45, а), встречает на пути парус, он огибает его с двух сторон. С наветренной стороны паруса создается давление выше (+), нежели с Подветренной (-). Равнодействующая сил давления образует силу Р,направленную перпендикулярно плоскости паруса или хорде, проходящей через переднюю и заднюю шкаторины и приложенную к центру парусности ЦП (рис. 45, б).

Рис. 44. Профиль паруса:
В - ширина паруса по хорде



Рис. 45. Силы, действующие на парус и корпус шлюпки:
а - действие ветра на парус; б - действие ветра на парус и воды на корпус шлюпки



Рис. 46. Правильное положение паруса при различных направлениях ветра: а - бейдевинд; б - галфвинд; в - фордевинд


Сила Р раскладывается на силу тяги Т, направленную параллельно диаметральной плоскости (ДП) шлюпки, заставляющую шлюпку двигаться вперед, и силу дрейфа Д, направленную перпендикулярно ДП, вызывающую дрейф и крен шлюпки.

Сила Р зависит от скорости и направления ветра относительно паруса. Чем больше
Если
Действие воды на шлюпку во многом зависит от обводов ее подводной части.

Несмотря на то что при ветре бейдевинд сила дрейфа Д превышает силу тяги Т, шлюпка имеет ход вперед. Здесь сказывается боковое сопротивление R 1 подводной части корпуса, которое во много раз больше лобового сопротивления R.


Рис. 47. Вымпельный ветер:
В И - истинный ветер; В Ш - ветер от движения шлюпки; В В - вымпельный ветер


Сила Д, несмотря на противодействие корпуса, все же сносит шлюпку с линии курса. Составленный ДП и направлением истинного движения шлюпки ИП
Таким образом, наибольшая тяга и наименьший дрейф шлюпки могут быть получены путем выбора наиболее выгодного положения диаметральной плоскости шлюпки и плоскости паруса относительно ветра. Установлено, что угол между ДП шлюпки и плоскостью паруса должен быть равен половине
При выборе положения паруса относительно ДП и ветра старшина шлюпки руководствуется не истинным, а вымпельным (кажущимся) ветром, направление которого определяется равнодействующей от скорости шлюпки и скорости истинного ветра (рис. 47).

Кливер, расположенный перед фоком, исполняет роль предкрылка. Поток воздуха, проходящий между кливером и фоком, уменьшает давление на подветренной стороне фока и, следовательно, увеличивает его тяговую силу. Это происходит лишь при условии, что угол между кливером и ДП шлюпки несколько больше угла между фоком и ДП (рис. 48, а).

Вымпельный ветер

Попробуем понять за счет, каких сил, и на основании каких принципов происходит движение парусного судна под действием ветра. Рассмотрим только косые паруса, как наиболее часто встречающиеся в настоящее время. Косое парусное вооружение бермудского типа это основное вооружение большинства современных как одномачтовых, так и двухмачтовых судов. Все спортивные и круизные одномачтовые яхты так же вооружаются бермудским шлюпом.

Это вооружение дает максимальные возможности по выбору курса относительно направления ветра и требует существенно меньшего экипажа для управления парусами и не требует такой высокой его выучки как в случае применения прямого парусного вооружения.

Замечательной особенностью косого паруса является его способность создавать тяговое усилие на курсах до 30-40 градусов к направлению ветра.

При этом нужно учитывать, что парусное судно движется относительно вымпельного или кажущегося ветра, а не относительно истинного или метеорологического ветра.

При движении любого объекта в воздушной среде возникает поток набегающего воздуха, скорость которого определяется скоростью движения объекта. Соответственно, даже при полном отсутствии ветра (штиль) наблюдатель, находящийся на судне будет ощущать ветер равный скорости судна - курсовой ветер, который будет по величине равен скорости судна, а по направлению противоположен направлению движения судна. Таким образом, парусное судно, при своем движении испытывает действие двух потоков воздуха:

Действие потока, вызванного наличием истинного ветра;

Действие потока, вызванного движением судна – курсового ветра.

Для определения результирующего потока воздуха, ощущаемого наблюдателем, находящимся на движущемся объекте, необходимо произвести векторное сложение потоков. Результирующий вектор и будет по скорости и направлению, ощущаемым или кажущимся ветром, который называется вымпельным ветром. Этот ветер и будет рассматриваться как ветер, действующий на паруса судна при его движении (рис 1).

Этот ветер является единственным ветром, с которым взаимодействуют паруса, а разложение его на истинный ветер и курсовой является результатом анализа исходных воздушных потоков.

Вымпельный ветер является величиной переменной даже при стабильном по скорости и направлению истинном ветре, так как его скорость и направление зависят от скорости и направления движения судна. Для простоты рассуждений рассмотрим случай, при котором рис. 1.

истинный ветер направлен под прямым углом к направлению движения судна и скорость истинного ветра равна скорости судна (рис. 2). Из рисунка видно, что при движении под углом 90 градусов к истинному ветру судно движется под углом 45 градусов к вымпельному ветру.

истинный В соответствие с изложенным выше, можно

ветер вымпельный ветер утверждать, что два судна, движущиеся од-

ним и тем же курсом, при одних и тех же ветровых

условиях, но с разными скоростями относительно воды будут двигаться под разными углами к вымпельному ветру. Судно, движущееся с более высокой скоростью, будет идти острее к вымпель-ному ветру, сохраняя тот же курсовой угол относительно истинного ветра. При этом, ветро- указатели на то пах мачт этих судов будут находить-

курсовой ветер ся под разными углами к ДП судна, фиксируя направ-

рис. 2 ление вымпельного ветра каждого из судов (рис. 3).

судно 1 судно 2

Из рисунка видно, что судно, идущее с большей скоростью, идет под меньшим углом к вымпельному ветру. Из этого можно сделать вывод о том, что при увеличении скорости движения судна вымпельный ветер заходит (уменьшается угол между направлением движения судна и вымпельным ветром). При дальнейшем увеличении скорости судна (лучше обводы, меньше трение, эффективнее работают паруса, другая конструкция корпуса судна) угол между направлением движения судна и вымпельным ветром станет меньше минимального лавировочного угла (минимального угла между направлением движения судна и вымпельным ветром, при котором сохраняется возможность эффективной работы парусов). После этого судно, имеющее большую скорость, будет вынуждено увалиться (увеличить угол между направлением движения судна и направлением вымпельного ветра) до восстановления минимального лавировочного угла. Этим объясняются разные углы выхода на ветер (угол между направлением истинного ветра и направлением движения судна). При этом, скорость выхода на ветер (скорость сближения с точкой прихода, находящейся на ветре) может быть больше у судна с большим углом выхода на ветер, но и большей скоростью движения. В качестве примера рассмотрим скорость выхода на ветер килевой яхты, спортивного швертбота и катамарана (рис. 4).

Острее к ветру идет килевая яхта, имеющая наименьшую, из этих судов, скорость движения. За ней идет спортивный швертбот и наименее остро к истинному ветру идет спортивный катамаран. Каждое из этих судов идет под одним и тем же углом к вымпельному ветру, но под разными углами к истинному ветру. Но, при этом, самая высокая скорость выхода на ветер будет у спортивного катамарана. Из рассмотрения треугольника скоростей становится понятной возможность приводится к истинному ветру на порывах ветра (кратковременное ускорение ветра). В порыве скорость истинного ветра возрастает, а скорость судна остается, в течение какого-то времени, прежней. Вымпельный ветер отходит и появляется возможность привестись и восстановить лавировочный угол относительно вымпельного ветра (рис. 5)

рис. 4

Килевая яхта

швертбот

Катамаран


Через некоторое время скорость судна возрастет, и оно будет вынуждено увалиться до прежнего курса относительно истинного ветра, сохраняя угол относительно вымпельного ветра. Однако, увеличение скорости судна возможно до достижения скорости, предельной для движения судна в водоизмещающем режиме (скорость судна в водоизмещающем режиме, выраженная в узлах, не может превышать длину судна, выраженную в метрах). Следовательно, при дальнейшем увеличении скорости ветра скорость судна не будет возрастать и курс судна относительно истинного ветра может быть острее.

Очень важным является наличие течений в районе плавания судна, с точки зрения поведения вымпельного ветра. При плавании на течении скорость судна векторно складывается со скоростью течения. В результате меняется абсолютная скорость судна и происходит изменение скорости и направления вымпельного ветра. При движении с попутным течением вымпельный ветер заходит, а при движении со встречным течением отходит. Следовательно, при попутном течении лавировочный угол увеличивается, а при встречном ветре – уменьшается. При этом скорость выхода яхты на ветер сохраняется практически неизменной. При направлении течения по направлению или против направления истинного ветра происходит изменение скорости истинного ветра. При однонаправленных ветре и течении вымпельный ветер заходит, а при разнонаправленных отходит, в силу увеличения скорости истинного ветра. Взаимодействие ветра и течения менят лавировочные углы судна относительно истинного ветра.

Современное навигационное оборудование дает возможность получать информацию не только о направлении и силе вымпельного ветра, но и о силе и направлении истинного ветра, путем пересчета треугольника скоростей (рис. 1). GPS дает информацию о скорости и направлении движения судна, а анеморумбометр о скорости и направлении вымпельного ветра. Путем пересчета треугольника скоростей система получает информацию о скорости и направлении истинного ветра.

Понимание поведения вымпельного ветра является ключевым для планирования маршрута движения судна, при известном направлении и скорости истинного ветра и фактической скорости парусного судна.

Однако для тихоходных судов угол между направлением истинного и вымпельного ветра незначителен и можно, с определенной степенью точности, утверждать, что этот угол находится в пределах 10-20 градусов.

Воздействие ветра на корабль определяется его на­правлением и силой, формой и размерами площади па­русности корабля, расположением центра парусности, значениями осадки, крена и дифферента.

Действие ветра в пределах курсовых углов 0-110° вызывает потерю скорости, а при больших курсовых уг­лах и силе ветра не свыше 3-4 баллов - некоторое ее приращение.

Действие ветра в пределах 30-120° сопровождается дрейфом и ветровым креном.

На движущийся корабль действует относительный (кажущийся) ветер, который связан с истинным следую­щими отношениями (рис. 7.1)(2):

Где Vи - скорость истинного ветра, м/с;

VK-скорость кажущегося ветра, м/с;

V0 - скорость хода корабля, м/с;

βо-угол дрейфа корабля, град.

Yk - угол кажущегося ветра;

Yи-угол истинного ветра.

Удельное давление ветра на корабль в кгс/м&sub2; рассчи­тывается по формуле

Где W - скорость ветра, м/с.


Рис. 7.1. Зависимость истинного и кажущегося ветра


Рис. 7.2. Действие кренящего момента

Так, при урагане, когда скорость ветра достигает 40-50 м/с, величина ветровой нагрузки достигает 130- 200 кгс/м2.

Полное давление ветра на корабль определяется из выражения P = pΩ, где &Omrga; - площадь парусности корабля.

Величина кренящего момента Мкр (рис. 7.2) в кгс м для случая установившегося движения и действия силы давления ветра Р, перпендикулярной ДП корабля, опре­деляется из выражения

Где zn - ордината центра парусности, м;

Т - средняя осадка корабля, м.

Волнение моря оказывает наиболее существенное вли­яние на корабль. Оно сопровождается действием на кор­пус значительных динамических нагрузок и качкой ко­рабля. При плавании на волнении увеличивается сопро­тивление корпуса корабля и ухудшаются условия совместной работы винтов, корпуса и главных двигателей.


Рис. 7.3. Элементы волн

В результате снижается скорость, увеличивается нагрузка на главные машины, повышается расход топлива и умень­шается дальность плавания корабля. Форма и размеры волн характеризуются следующими элементами (рис. 7.3):

Высота волны h - расстояние по вертикали от вер­шины до подошвы волны;

Длина волны λ - расстояние по горизонтали между двумя соседними гребнями или подошвами;

Период волны t - промежуток времени, в течение которого волна проходит расстояние, равное своей дли­не(3);

Скорость волны С - расстояние, проходимое вол­ной в единицу времени.

По происхождению волны подразделяются на ветро­вые, приливо-отливные, анемобарические, волны земле­трясения (цунами) и корабельные. Наиболее распространенными являются ветровые волны. Различают три типа волнения: ветровое, зыбь и смешанное. Ветровое волне­ние - развивающееся, оно находится под непосредствен­ным воздействием ветра в отличие от зыби, представляю­щей собой инерционное волнение, или волнение, вызванное штормовым ветром, дующим в удаленном районе. Профиль ветровой волны не симметричен. Ее подветрен­ный склон круче, чем наветренный. На вершинах ветро­вых волн образуются гребни, верхушки которых под дей­ствием ветра заваливаются, образуя пену (барашки), а при сильном ветре срываются. Направление ветра и на­правление ветровых волн в открытом море, как правило, совпадают или разнятся на 30-40°. Размеры ветровых волн зависят от скорости ветра и продолжительности его воздействия, длины пути ветро­вых потоков над водной поверхностью и глубины данного района (табл. 7.1).

ТАБЛИЦА 7.1. МАКСИМАЛЬНЫЕ ЗНАЧЕНИЯ ЭЛЕМЕНТОВ ВОЛН ДЛЯ ГЛУБОКОГО МОРЯ (Н/Λ > 1/2)

Наиболее интенсивный рост волны наблюдается при отношении C/W < 0,4-0,5. Дальнейшее увеличение этого отношения сопровождается уменьшением роста волн. По­этому волны опасны не в момент наибольшего ветра, а при последующем его ослаблении.

Для приближенных расчетов средней высоты волн ус­тановившегося океанского волнения пользуются форму­лами:

При ветре до 5 баллов

При ветре свыше 5 баллов

Где Б - сила ветра в баллах по шкале Бофорта (§ 23.3).

В условиях развитого волнения имеет место интерфе­ренция отдельных волн (до 2% общего количества и бо­лее), которые достигают максимального развития и пре­вышают среднюю высоту волн в два-три раза. Такие вол­ны особенно опасны.

Наложение одной волновой системы на другую наибо­лее интенсивно происходит при изменении направления ветра, частом чередовании штормовых ветров и перед фронтом тропических циклонов(4).

Энергия волн развитого волнения исключительно вели­ка. Для корабля, лежащего в дрейфе, динамическое воз­действие волн может быть определено из выражения р=0,1 τ² где τ - истинный период волны, с.

Так, для периодов волн около 6-10 с величина Р мо­жет достигать внушительных значений (3,6-10 т/м²).

При движении корабля курсом против волны динами­ческое воздействие волн будет возрастать пропорциональ­но квадрату скорости корабля, выраженной в метрах в се­кунду.

Длина волны в метрах, скорость в метрах в секунду и период в секундах связаны между собой следующими соотношениями:

Практически движущийся корабль встречает не истин­ный, а относительный (кажущийся) период волны τ", ко­торый определяется из выражения

Где а - курсовой угол фронта гребня волны, измеренный по любому борту.

Плюс относится к случаю движения против волны, минус - по волне.

При изменении курса корабль располагается относи­тельно приведенной длины волны λ":

Характер качки корабля имеет сложную зависимость между элементами волн (h, λ, τ и С) и элементами ко­рабля (L, D, Т1,2 и δ).

Безопасность корабля с точки зрения остойчивости определяется не только его конструкцией и распределе­нием грузов, но и курсом, а также скоростью. В условиях развитого волнения непрерывно меняется форма дейст­вующей ватерлинии. Соответственно изменяются форма погруженной части корпуса, плечи остойчивости формы и восстанавливающие моменты.

Пребывание корабля на подошве волны сопровожда­ется увеличением восстанавливающих моментов. Пребыва­ние корабля (особенно длительное) на гребне волны опасно и может привести к опрокидыванию. Наиболее опасна резонансная качка, при которой период собствен­ных колебаний корабля T1,2 равен видимому (наблюдае­мому) периоду волны?" Характер бортовой резонансной качки показан на рис. 7.4. Как следует из рисунка, явление резонанса наблюдается при отношении 0,7 < T1 /τ" < 1,3

Особенно опасна резонансная качка при положении корабля лагом к волне.
При следовании корабля курсом против волны зна­чительно возрастают потери в скорости, происходят ого­ление оконечностей и резкие броски оборотов. Удары волн в днище носовой оконечности (явление «слемминга») могут привести к деформации корпуса и срыву от­дельных механизмов и устройств с фундаментов.

При следовании по волне корабль в меньшей степени подвержен ударам волн. Однако следование его по вол­не со скоростью, близкой к скорости волны VK = (0,6--1,4) С (корабль «оседлал» волну), приводит к резкой потере поперечной остойчивости в связи с изменением формы и площади действующей ватерлинии, а это ведет к возникновению гироскопического момента, действую­щего в плоскости ватерлинии и значительно ухудшаю­щего управляемость корабля.


Рис. 7.4. Резонансная качка

Наиболее опасно плавание малого корабля на попутном волнении, когда λ=L ко­рабля, а VK=C.

Универсальная диаграмма качки Ю.В. Ремеза

Универсальная диаграмма качки определяет зависи­мость наблюдаемых элементов волн от изменения элемен­тов движения корабля.

Диаграмма рассчитана по формуле

Где V - скорость корабля, уз.

Диаграмма определяет зависимость между X и V sin a при различных значениях т". Она построена относительно преобладающей системы волн, которая может быть выде­лена на любом волнении и оказывает наиболее сущест­венное влияние на качку корабля (§ 23.4). Уни­версальная диаграмма может быть использована только в районах с достаточно большими глубинами (более 0,4Х волны).

Применение универсальной диаграммы качки позво­ляет решить следующие основные задачи:
- определить курс и скорость, при которых корабль может попасть в положение резонансной качки (килевой и бортовой);

Определить длину волны в районе плавания;

Определить сектора курсов и диапазоны скоростей, при которых корабль будет испытывать сильную качку, близкую к резонансной;

Определить курсы и скорости, при которых корабль будет находиться в состоянии наиболее опасной пони­женной поперечной остойчивости;

Определить курсы и скорости, при которых ко­рабль будет испытывать явление «слеминга».

(1) Дальнейшее усиление ветра сопровождается ветровым волне­нием, снижающим скорость корабля.
(2) Координаты истинного ветра связаны с землей, а кажуще­гося с кораблем.
(3) Практически движение частиц воды ветрового волнения про­исходит по орбитам, близким по форме к окружности или эллипсу, Перемещается лишь профиль волны.
(4) Характер волнообразования и его связь с элементами ветра подробно рассматриваются в курсе океанографии.

Ветра, которые в Южной части Тихого океана дуют в западном направлении. Именно поэтому наш маршрут был составлен так, чтобы на парусной яхте "Джульетта" двигаться с востока на запад, то есть так, что ветер дует в спину.

Однако если посмотреть на наш маршрут, вы заметите, что часто, например при движении с юга на север от Самоа к Токелау, нам приходилось двигаться перпендикулярно ветру. А иногда направление ветра и вовсе менялось и приходилось идти против ветра.

Маршрут "Джульетты"

Что делать в таком случае?

Парусные суда уже давно умеют ходить против ветра. Об этом давно хорошо и просто написал классик Яков Перельман в своей Второй книге из цикла «Занимательная физика». Этот кусочек я здесь привожу дословно с картинками.

"Под парусами против ветра

Трудно представить себе, как могут парусные суда идти «против ветра» - или, по выражению моряков, идти «в бейдевинд». Правда, моряк скажет вам, что прямо против ветра идти под парусами нельзя, а можно двигаться лишь под острым углом к направлению ветра. Но угол этот мал - около четверти прямого угла, - и представляется, пожалуй, одинаково непонятным: плыть ли прямо против ветра или под углом к нему в 22°.

На деле это, однако, не безразлично, и мы сейчас объясним, каким образом можно силой ветра идти навстречу ему под небольшим углом. Сначала рассмотрим, как вообще действует ветер на парус, т. е. куда он толкает парус, когда дует на него. Вы, вероятно думаете, что ветер всегда толкает парус в ту сторону, куда сам дует. Но это не так: куда бы ветер ни дул, он толкает парус перпендикулярно к плоскости паруса. В самом деле: пусть ветер дует в направлении, указанном стрелками на рисунке ниже; линия АВ обозначает парус.

Ветер толкает парус всегда под прямым углом к его плоскости.

Так как ветер напирает равномерно на всю поверхность паруса, то заменяем давление ветра силой R, приложенной к середине паруса. Эту силу разложим на две: силу Q, перпендикулярную к парусу, и силу Р, направленную вдоль него (см. рис. вверху, справа). Последняя сила никуда но толкает парус, так как трение ветра о холст незначительно. Остается сила Q, которая толкает парус под прямым углом к нему.

Зная это, мы легко поймем, как может парусное судно идти под острым углом навстречу ветру. Пусть линия КК изображает килевую линию судна.

Как можно идти на парусах против ветра.

Ветер дует под острым углом к этой линии в направлении, указанном рядом стрелок. Линия АВ изображает парус; его помещают так, чтобы плоскость его делила пополам угол между направлением киля и направлением ветра. Проследите на рисунке за разложением сил. Напор ветра на парус мы изображаем силой Q, которая, мы знаем, должна быть перпендикулярна к парусу. Силу эту разложим на две: силу R, перпендикулярную к килю, и силу S, направленную вперед, вдоль килевой линии судна. Так как движение судна в направлении R встречает сильное сопротивление воды (киль в парусных судах делается очень глубоким), то сила R почти полностью уравновешивается сопротивлением воды. Остается одна лишь сила S, которая, как видите, направлена вперед и, следовательно, подвигает судно под углом, как бы навстречу ветру. [Можно доказать, что сила S получает наибольшое значение тогда, когда плоскость паруса делит пополам угол между направлениями киля и ветра.]. Обыкновенно это движение выполняется зигзагами, как показывает рисунок ниже. На языке моряков такое движение судна называется «лавировкой» в тесном смысле слова."

Давайте теперь рассмотрим все возможные направления ветра относительно курса лодки.

Схема курсов судна относительно ветра, то есть углом между направлением ветра и вектором от кормы к носу (курсом).

Когда ветер дует в лицо (левентик), паруса болтаются из стороны в сторону и двигаться с парусом невозможно. Разумеется, всегда можно спустить паруса и включить мотор, но это уже не имеет отношения к хождению под парусом.

Когда ветер дует точно в спину (фордевинд, попутный ветер), разогнанные молекулы воздуха оказывают давление на парус с одной стороны и лодка двигается. В этом случае судно может двигаться только медленнее скорости ветра. Здесь работает аналогия катания на велосипеде по ветру - ветер дует в спину и педали крутить легче.

При движении против ветра (бейдевинд) парус двигается не из-за давление молекул воздуха на парус сзади, как в случае фордевинда, а из-за подъемной силы, которая создается за счет разных скоростей воздуха с двух сторон вдоль паруса. При этом из-за киля, лодка двигается не в перпендикулярном к курсу лодки направлении, а только вперед. То есть парус в этом случае - это не зонтик, как в случае бейдевинда, а крыло самолета.

Во время наших переходов мы в основном шли бакштагами и галфвиндами со средней скоростью в 7-8 узлов при скорости ветра от 15 узлов. Иногда мы шли против ветра, галфвиндом и бейдевиндом. А когда ветер затухал - включали мотор.

В общем, лодка с парусом, идущая против ветра - это не чудо, а реальность.

Самое интересное, что лодки умеют ходить не только против ветра, но даже быстрее ветра. Происходит это, когда лодка идет бакштагом, создавая “собственный ветер”.

§ 61. Использование паруса.

В практике управления маломерными моторными судами па море и реке известно много примеров, когда даже самый примитивный парус, сделанный из имеющихся на судне «подручных» средств, позволял небольшому самоходному судну, потерявшему возможность самостоятельно передвигаться, успешно окончить плавание без посторонней помощи.

Судоводителю-любителю надо хорошо знать, как действует парус и как сделать простое парусное оборудование на случай, если механический двигатель судна окажется неисправным, без топлива или за борт упадет подвесной мотор, а также на случай повреждения или потери гребного винта.

Соединение парусного вооружения с мотором увеличивает туристические возможности судна. С помощью паруса аварийное судно можно довести до базы или до ближайшего населенного пункта.

1. Действие паруса.

Давление воздушного потока на поверхность паруса движет судно. Направление этого движения зависит от положения паруса относительно направления ветра. Точка приложения равнодействующей всех сил давления ветра на парус называется центром парусности - ЦП.

Рис. 137. Силы, действующие на парус и судно при ветре с носовых углов

Если бы парус был вытянут вдоль диаметральной плоскости судна, то сила давления ветра А (рис. 137) кренила бы судно, но не двигала его вперед. Но если плоскость паруса поставлена под некоторым углом к направлению ветра, то сила А может быть разложена на две составляющие Б и В. Первая «работает», а вторая «скользит» вдоль паруса (см. рис. 137, а и 138, а).

Всякое судно обладает способностью сопротивляться боковому сдвигу в воде - оно имеет так называемое боковое сопротивление и центр его - ЦБС - располагается обычно близко от миделя судна в его подводной части и приблизительно на одной отвесной линии с ЦП (рис. 139). Перенося силу Б в ЦБС, пренебрегая креном и считая ЦБС неподвижной точкой, можно разложить Б на две составляющие Т и Д. Первая тянет судно вперед вдоль диаметральной плоскости, а вторая стремится сместить судно в бок, создавая ему дрейф (см. рис. 137, б). Величина дрейфа зависит от формы подводной части судна и угла между направлениями диаметральной плоскости ДП судна и ветра. В этом можно убедиться, построив схему сил для нескольких положений. Чем меньше угол между ДП и направлением ветра, тем больше сила А и меньше сила Т (см. рис. 138, а и б).

Рис. 138. Силы, действующие на парус и судно при ветре с кормовых углов


Если судно имеет сильно развитые продольные плоскости под водой (борта, угловатые скулы, киль, руль), то смещение судна в бок незначительно. Если же судно плоскодонное, незагруженное и широкое, то его БС ничтожно и дрейф велик. Поэтому суда первого рода, например, яхты или килевые шлюпки, способны двигаться вперед под углом до 40-30° к направлению ветра, считая от носа, а плоскодонные катера и лодки только при ветре с кормы, т. е. под углами ветра не менее 120° к диаметральной плоскости.


Рис. 139. Положение центра парусности относительно центра бокового сопротивления

Наивыгоднейшее положение паруса при любом направлении ветра такое, при котором плоскость паруса делит пополам угол между ДП и ветром (см. рис. 137, а, 138, а). Практически парус следует ставить так, чтобы угол I был немного меньше угла II .

Если ЦП по вертикали совпадает с ЦБС, то судно движется вперед без помощи руля. Однако на ходу ЦБС несколько смещается в нос или в корму, и поэтому судно на ходу будет всегда уклоняться от курса носом на ветер или под ветер. Обычно считается, что парусное судно под действием шквала или без управления рулем должно само под действием паруса «зарыскнуть» или «прийти к ветру», т. е. повернуть носом против него. Тогда само собой прекратится кренящее действие ветра. Поэтому мачту и парус на судне размещают так, чтобы ЦП был всегда несколько в корму (по вертикали) от ЦБС. Этого достигают при расчете на чертеже или же опытным путем на воде (см. рис. 139). Однако для судов, способных ходить под парусом только с попутными ветрами, ЦП должен быть расположен в нос от ЦБС. Тогда при шквале судно будет само уходить от него, т. е. стремиться «уваливаться под ветер». Это безопаснее и облегчает в случае усиления ветра быструю уборку паруса, если даже для этого будет брошено управление рулем.

2. Основные термины.

В зависимости от направления ветра относительно ДП и борта судна приняты следующие термины правил управления судна под парусами.

Борт, обращенный к ветру, называется наветренным. Борт, обращенный от ветра, называется подветренным. Ход с ветром, дующим в правый борт, называют правым галсом, в левый борт - левым галсом. Прямой отрезок пути под парусами называется галсом.

Двигаться к наветренной цели, расположенной в стороне, откуда дует ветер, значит подыматься; двигаться к подветренной цели - спускаться; парусное судно не может идти прямо против ветра, оно должно идти зигзагами, ложась то на правый, то на левый галс. Такое движение называется лавировкой.

Ветер, дующий с носовых курсовых углов в секторе 0-85°, называется бейдевинд; говорят: «Судно идет в бейдевинд» (правого или левого галса). Ветер, дующий в борт (85-95°), называется галфвинд; говорят: «Судно идет в галфвинд или в полветра» (правого или левого галса). Ветер, дующий с кормовых курсовых углов (95-170°), называется бакштаг; говорят: «Судно идет в бакштаг» (правого или левого галса). Ветер, дующий прямо в корму (175° левый борт- 175° правый борт), называется фордевинд; говорят: «Судно идет на фордевинд». Галс при этом не отмечается. Чем больше становится угол между направлением ветра и ДП, тем ветер делается «полнее», чем меньше, тем ветер и курс «круче».

3. Постановка парусов и управление парусным судном.

Постановку парусов следует сообразовать с направлением ветра. Как правило, косые паруса поднимают, поставив судно носом против ветра («на ветер», «к ветру»). Прямой же парус поднимают, поставив судно по ветру. Если ветер препятствует постановке паруса у берега, следует развернуть судно или отойти от берега. Первым ставят грот, ослабив шкот. Когда фал вытянут до места, обтягивают шкот и начинают править рулем, ложась на нужный курс. После этого ставят стаксель и обтягивают его подветренный шкот.

Грот и стаксель под действием ветра давят на соответствующую оконечность судна. Если эти силы неравны, то судно стремится вращаться вокруг своего ЦБС, зарыскивая или уваливаясь. При движении на прямом курсе при боковом ветре необходимо отрегулировать натяжением шкотов оба паруса так, чтобы судно при прямом руле шло прямо. Если сохраняется все же стремление увалиться или зарыскнуть, но необходимо выровнять судно на курсе рулем. Можно, однако, добиться уравновешенности действия парусов перемещением грузов или людей вдоль шлюпки. Если нос идет под ветер, загружают нос, если идет на ветер, загружают корму.

На ходу под парусами в шлюпке нельзя стоять. Все должны сидеть на сиденьях наветренного борта, а при сильном ветре - на дне лицом к парусу (т. е. с наветренной стороны). При движении под парусом судоводитель-любитель должен поддерживать на судне дисциплину, и только по его команде разрешается перемещаться на судне или выполнять ту или иную работу. Снасти не должны быть разбросаны в беспорядке внутри судна, их следует уложить в бухточки. Шкоты должны быть чисто расправлены; грота-шкот и стаксель-шкот следует держать на руках; запрещается завертывать их взахлест на утках.

В крайнем случае делают один-два оборота и ходовой конец держат на руках.

Грузы, инструменты и другие вещи должны быть уложены так, чтобы при крене судна они не могли сместиться и не препятствовали действиям с парусами, наблюдению вперед и откачиванию воды. Фалы должны быть завернуты так, чтобы в случае сильного шквала их можно было мгновенно отдать.

Если судно сильно кренит ветром, то при ветре с борта или с носа следует потравить шкоты, а затем «привести к ветру», для чего рулем поставить судно почти против ветра, раздернув стаксель-шкоты. При ходе с попутным ветром «приводить к ветру" при сильном шквале опасно, поэтому лучше убрать грот и продолжать движение под стакселем. При ходе в бейдевинд полезно несколько загрузить нос, при этом судно лучше слушает руля и парусов. Если нужно держать круче к ветру, то следует подобрать грота-шкот и несколько потравить стаксель-шкот. Однако нельзя при этом допускать, чтобы паруса «полоскали» (хлопали) по ветру.

Как уже было сказано, угол между ветром и ДП должен делиться парусом пополам. Поставив судно на курс и расположив соответственно парус, следует затем слегка подобрать грота-шкот так, чтобы передняя шкаторина его начала мелко дрожать. Это значит, что парус работает хорошо. Чрезмерное выбирание шкота только валит судно, убавляя ход и увеличивая дрейф (снос под ветер). Чем круче к ветру идет судно, тем ход меньше, а дрейф больше. При ходе в бакштаг дрейфа практически нет, а на фордевинде он отсутствует совершенно.

Управление рулем на фордевинде самое трудное. Судно стремится развернуться бортом к ветру, причем оно может броситься на любой галс. Парус стоит поперек судна и его наружная шкаторина все время рискует быть отдутой с подветра, т. е. с носа, когда ветер после порыва спадает. Тогда парус может стремительно переброситься с одного борта на другой с резким ударом, могут быть порваны ванты, шкот или опрокинуто судно.

Поэтому, идя на фордевинд, следует загрузить больше корму, а во избежание перебрасывания грота на другой галс полезно тонким шестом (багром, веслом) распереть шкотовый угол паруса. Для этого тонкий конец шеста вставляют в шкотовый кренгельс паруса, а толстый упирают во что-нибудь внутри судна - в борт, кильсон. У распорного шеста должен сидеть человек и придерживать его руками.

Если все же парус бросился на другой борт, то следует руками как можно быстрее подобрать слабину шкота, а телом нажать на румпель и вывести судно на курс бакштаг того галса, на который бросился парус. Иначе переброс может повториться. Это означает, что если, например, парус стоял на левый галс (был вывален на правый борт) и его бросило на правый галс, то при переходе паруса на левый борт следует привести судно в полный бакштаг правого галса (взять правее) и так править.

Если при ходе на фордевинд при крепком ветре волнение начинает заливать судно с кормы, а изменить курс почему-либо невозможно, то нельзя загружать корму для улучшения управляемости; вместо этого нужно выпустить с кормы на прочном конце длиной 5-8 м драгу (волокушу). Драгой может служить обвязанная прочная корзинка, загруженная так, чтобы она едва плавала, а также связка любых предметов, имеющих минимальную плавучесть и оказывающих значительное сопротивление. На неглубоком месте можно спустить с кормы небольшую гладкую балластину, волочащуюся по грунту за судном.

Прямой парус, как уже было сказано, непригоден для лавирования, но может все же работать и при боковых ветрах. По общим правилам оттяжками и шкотами его поворачивают в требуемое положение и рулем удерживают судно на нужном курсе или возможно ближе к нему. В этих случаях наветренные шкот и оттяжку реи заносят вперед, а подветренные - на корму.

4. Повороты.

Под парусами для перемены галса делаются повороты двух видов: поворот оверштаг делают, приводя судно к ветру и переходя носом через линию ветра; поворот через фордевинд делают, уваливая нос судна под ветер и переходя линию ветра кормой.

Рис 140. Поворот оверштаг


Поворот оверштаг (рис. 140) удобнее и безопаснее, чем через фордевинд, так как судно не разгоняется, а наоборот, почти останавливается, проходя носом линию ветра. Перед поворотом подают команду: «К повороту оверштаг готовиться», берут несколько полнее, чтобы увеличить ход, затем подбирают грота-шкот, кладут руль на ветер и травят стаксель-шкот. Судно пойдет носом к ветру, стаксель заполощет. В момент, когда судно стало носом на ветер и заполоскал грот, полезно снова подобрать стак сель-шкот, чтобы он помог перевалить через линию ветра, для этого командуют: «Стаксель на ветер». Затем травят грота-шкот, переводят шкотами стаксель на новый галс, командуя: «Стаксель на правый (или левый) борт», и дают судну под его действием увалиться под ветер на новом галсе, после чего выбирают грота-шкот и ложатся на нужный курс.

Рис. 141. Поворот через фордевинд


Для облегчения поворота оверштаг полезно перед его началом пересадить одного-двух человек в нос. Может случиться, что судно, придя носом к ветру, остановится и пойдет задним ходом. За этим надо следить и сразу же переложить руль. Тогда на заднем ходу рулем можно развернуть корму в нужном направлении и поворот удастся. Если же поворот совсем не удался, то следует быстрее лечь на прежний галс и повторить маневр.

Поворот через фордевинд (рис. 141) делается тогда, когда это требуется по форме фарватера или когда благоприятствуют погода и местность. Этот поворот требует простора, так как судно получает большой ход. Для поворота через фордевинд, после предупредительной команды, начинают уваливаться под ветер, постепенно потравливая грота-шкот. Придя в бакштаг, кладут постепенно руль еще больше под ветер, одновременно быстро выбирают грота-шкот, чтобы при перебрасывании паруса он был выбран, а парус вытянут посреди судна.

Тогда переход грота на другой борт произойдет без рывка. Судно перейдет кормой линию ветра, паруса перейдут на другой галс и «заберут» ветер. Стаксель-шкот травят, чтобы он не препятствовал судну идти носом к ветру. Как только судно пришло на новый галс, грота-шкотом и рулем приводятся на требуемый курс и правят им, подобрав соответственно шкоты стакселя и грота.

При сильном ветре поворот через фордевинд делают, убрав грот или прихватив его к мачте.