Радиолокационные станции и комплексы пво россии. Зарубежные многопозиционные радиолокационные системы скрытного контроля воздушного пространства Обеспечение электробезопасности при работе с пэвм

Доложил президенту, что Воздушно-космические силы в соответствии с программой перевооружения армии и флота, принятой в 2012 году, уже получили 74 новые радиолокационные станции. Это немало, и на первый взгляд состояние радиолокационной разведки воздушного пространства страны выглядит благополучно. Однако в этой сфере в России остаются серьезные нерешенные проблемы.

Эффективная радиолокационная разведка и контроль воздушного пространства — непременные условия обеспечения военной безопасности любой страны и безопасности воздушного движения в небе над ней.

В России решение этой задачи возложено на РЛС Минобороны и .

До начала 1990-х годов системы военного и гражданского ведомств развивались самостоятельно и практически самодостаточно, что требовало серьезных финансовых, материальных и других ресурсов.

Однако условия контроля воздушного пространства все больше усложнялись из-за возрастающей интенсивности полетов, особенно иностранных авиакомпаний и летательных аппаратов малой авиации, а также из-за внедрения уведомительного порядка использования воздушного пространства и низкого уровня оснащения гражданской авиации ответчиками единой системы государственного радиолокационного опознавания.

Резко усложнился контроль за полетами в «нижнем» воздушном пространстве (зоне G по международной классификации), в том числе над мегаполисами и особенно в Московской зоне. При этом активизировалась деятельность террористических организаций, способных организовывать теракты с использованием летательных аппаратов.

Влияние на систему контроля воздушного пространства оказывает и появление качественно новых средств наблюдения: новые РЛС двойного назначения, загоризонтные РЛС и средства автоматического зависимого наблюдения (АЗН), когда помимо вторичной радиолокационной информации с борта наблюдаемого воздушного судна диспетчеру передаются параметры непосредственно с навигационных приборов самолета, и т.п.

Чтобы упорядочить все имеющиеся средства наблюдения, в 1994 году было решено создать объединенную систему радиолокационных средств Минобороны и Минтранса в рамках федеральной системы разведки и контроля воздушного пространства Российской Федерации (ФСР и КВП).

Первым нормативным документом, положившим начало созданию ФСР и КВП, стал соответствующий указ от 1994 года.

Согласно документу, речь шла о межведомственной системе двойного назначения. Целью создания ФСР и КВП объявлялось объединение усилий Минобороны и Минтранса для эффективного решения задач противовоздушной обороны и управления движением в воздушном пространстве России.

По мере выполнения работ по созданию такой системы с 1994 по 2006 год было издано еще три президентских указа и несколько постановлений правительства. Этот период времени был потрачен в основном на создание нормативных правовых документов о принципах согласованного применения гражданских и военных РЛС (Минобороны и Росавиации).

С 2007 по 2015 год работа над ФСР и КВП шла по линии Госпрограммы вооружений и отдельной федеральной целевой программы (ФЦП) «Совершенствование федеральной системы разведки и контроля воздушного пространства Российской Федерации (2007-2015 годы)». Головным исполнителем работ по реализации ФЦП был утвержден . По мнению специалистов, объем выделенных для этого средств был на уровне минимально допустимого, однако работа наконец началась.

Господдержка позволила преодолеть негативные тенденции 1990-х и начала 2000-х годов по сокращению радиолокационного поля страны и создать несколько фрагментов единой автоматизированной радиолокационной системы (ЕРЛС).

До 2015 года площадь контролируемого Вооруженными силами России воздушного пространства стабильно росла, а требуемый уровень безопасности воздушного движения сохранялся.

Все основные мероприятия, предусмотренные ФЦП, были выполнены в пределах установленных показателей, но она не предусматривала завершения работ по созданию единой радиолокационной системы (ЕРЛС). Такая система разведки и контроля воздушного пространства была развернута только в отдельных частях России.

По инициативе Минобороны и при поддержке Росавиации были разработаны предложения по продолжению действий начатой, но не доведенной до конца программы в целях полномасштабного развертывания единой системы контроля разведки и контроля воздушного пространства над всей территорией страны.

При этом «Концепция воздушно-космической обороны Российской Федерации на период до 2016 года и дальнейшую перспективу», утвержденная президентом России еще 5 апреля 2006 года, предполагает полномасштабное развертывание единой федеральной системы до конца прошлого года.

Однако действие соответствующей ФЦП заканчивалось уже в 2015 году. Поэтому еще в 2013 году по итогам совещания по вопросу выполнения Государственной программы вооружения на 2011-2020 годы президент России дал поручение Минобороны и Минтрансу совместно с и представить предложения по внесению изменений в ФЦП «Совершенствование федеральной системы разведки и контроля воздушного пространства Российской Федерации (2007-2015 годы)» с продлением срока действия этой программы до 2020 года.

Соответствующие предложения должны были быть готовы к ноябрю 2013 года, однако поручение Владимира Путина так и не было выполнено, а работы по совершенствованию федеральной системы разведки и контроля воздушного пространства с 2015 года не финансируются.

Принятая ранее ФЦП закончила свое действие, а новая так и не была утверждена.

Ранее координация соответствующих работ между Минобороны и Минтрансом возлагалась на образованную указом президента Межведомственную комиссию по использованию и контролю воздушного пространства, которая была упразднена еще в 2012 году. После ликвидации этого органа заниматься анализом и разработкой необходимой нормативно-правовой базы стало попросту некому.

Более того, в 2015 году в федеральной системе разведки и контроля воздушного пространства не стало должности генерального конструктора. Координация органов ФСР и КВП на государственном уровне фактически прекратилась.

При этом сейчас компетентными специалистами признается необходимость совершенствования этой системы путем создания перспективной интегрированной РЛС двойного назначения (ИРЛС ДН) и объединения ФСР и КВП с системой разведки и предупреждения о воздушно-космическом нападении.

Новая система двойного назначения должна обладать прежде всего преимуществами единого информационного пространства, а это возможно только на основе решения множества технических и технологических проблем.

О необходимости таких мер свидетельствуют и усложнение военно-политической обстановки, и усиление угроз из воздушно-космического пространства в современной войне, которые уже привели к созданию нового вида вооруженных сил — Воздушно-космических.

В системе воздушно-космической обороны требования к ФСР и КВП будут только расти.

Среди них — обеспечение эффективного непрерывного контроля в воздушном пространстве госграницы на всем ее протяжении, особенно на вероятных направлениях удара средств воздушно-космического нападения — в Арктике и на южном направлении, включая полуостров Крым.

Для этого в обязательном порядке требуется новое финансирование ФСР и КВП по линии соответствующей федеральной целевой программы или в другой форме, воссоздание координационного органа между Минобороны и Минтрансом, а также утверждение новых программных документов, например до 2030 года.

Причем если ранее основные усилия были направлены на решение задач контроля воздушного пространства в мирное время, то в предстоящий период приоритетными станут задачи предупреждения о воздушном нападении и информационного обеспечения боевых действий по отражению ракетных и воздушных ударов.

— военный обозреватель «Газеты.Ru», полковник в отставке.
Окончил Минское высшее инженерное зенитное ракетное училище (1976),
Военную командную академию ПВО (1986).
Командир зенитного ракетного дивизиона С-75 (1980-1983).
Заместитель командира зенитного ракетного полка (1986-1988).
Старший офицер главного штаба Войск ПВО (1988-1992).
Офицер главного оперативного управления Генерального штаба (1992-2000).
Выпускник Военной академии (1998).
Обозреватель « » (2000-2003), главный редактор газеты «Военно-промышленный курьер» (2010-2015).

Первичные РЛС обзора воздушного пространства (ПРЛС)

ПРЛС служат основным источником информации о динамической воздушной обстановке в определенной области пространства. Они предназначены для обнаружения ВС и определения азимутальных углов и дальностей до ВС. ПРЛС производят облучение всех объектов, попадающих в пределы их зоны обзора, и осуществляют прием сигналов, отраженных этим объектами. Анализ принятых сигналов позволяет получать всю необходимую информацию о движении ВС. Принцип функционирования ПРЛС аналогичен принципу функционирования обычной импульсной радиолокационной станции, хотя и имеет некоторые специфические особенности, обусловленные предъявляемыми требованиями, свойствами отражающих объектов и условиями применения.

Основные эксплуатационно-технические характеристики (ЭТХ)

К основным ЭТХ ПРЛС относятся зона обзора, разрешающая способность, точность, надежность, массово-габаритные характеристики.

Зона обзора (зона видимости) -- область пространства, в пределах которой ПРЛС обеспечивает обнаружение ВС и определение их координат с требуемой

точностью и надежностью при заданной вероятности правильного обнаружения и допустимом уровне ложных тревог. Зона обзора характеризуется дальностью обнаружения и телесным углом, в пределах которого она достигается. Точнее говоря, зона обзора задается дальностью обнаружения, рассматриваемой в качестве функции угловых координат ВС (азимута и угла места) относительно точки размещения ПРЛС.

Дальность радиолокационного обнаружения зависит от мощности излучения ПРЛС, направленных свойств антенны, чувствительности приемника и отражающих свойств воздушных судов.

где -- r max - максимальная дальность обнаружения; Р Прд - мощность, излучаемая передатчиком ПРЛС; G - коэффициент направленного действия антенны; л- длина волны, на которой работает ПРЛС; у ц - эффективная площадь рассеяния, характеризует отражающие свойства объекта отражения; Р Прмmin - чувствительность приемника, т.е. минимальная мощность отраженного сигнала на входе приемника ПРЛС, которая после обработки в нем, обеспечивает надежное воспроизведение отраженного сигнала на экране индикатора.

Выражение (1) показывает максимальную дальность действия ПРЛС в свободном пространстве и показывает, что для ощутимого увеличения дальности необходимо значительное увеличение Р Прд, у ц, G или уменьшение P Прм min и л.

Однако на процесс радиолокационного наблюдения в значительной мере оказывает влияние земная поверхность. Отражаемые ею сигналы суммируются с прямыми сигналами, что приводит к интерференции прямых и отраженных полей. В общем случае мощность принимаемых отраженных сигналов отличается от мощности принимаемых сигналов в условиях свободного пространства

Р * Прм = Р Прм · Ф 4 (в),

где - Ф(в) -- интерференционный множитель.

Отсюда следует, что максимальная дальность радиолокационного наблюдения с учетом влияния земли определиться как

r max з = r max · Ф(в) (2).

Интерференционный множитель является функцией угла места. Максимальное и минимальное значение его равны: Ф max = 1 + с 0 ; Ф min = 1 - с 0 , поэтому и максимальная дальность будет зависеть от угла места и изменяться в пределах от r max ·(1-с 0) до r max ·(1+с 0), где с 0 - обобщенный коэффициент отражения. Это приводит к тому, что диаграмма излучения и зона обнаружения в вертикальной плоскости имеют лепестковый характер (рис.58).

Рис. 58. Форма ДНА с учетом влияния земной поверхности

Углы места, под которыми располагаются максимумы и минимумы диаграммы излучения, определяются как:

sinв n min = n· л/2h; sinв n max = (2n+1) ·л/4h (3),

где - h - высота подвеса антенны ПРЛС; л - длина волны; n = 0,1,2,3,....

Отсюда следует, что угол места первого минимума в 1 min = 0, а первый максимум ориентирован под углом места в 1 max = л/4h.

Из выражения (3) видно, что чем выше поднята антенна над землей, тем ближе к земле прижимается первый лепесток, количество лепестков увеличивается, а ширина их уменьшается.

Так как коэффициент с 0 может принимать одно из значений в пределах 0… 1, то минимальное и максимальное значения интерференционного множителя Ф(в) при с 0 = 1 равны соответственно 0 и 2. Максимальная дальность действия в направлениях в max может возрастать в 2 раза по сравнению с r max , определяемой выражением (1). Зато в направлениях в min максимальная дальность действия уменьшается до нуля. Для уменьшения глубины провалов зоны видимости РЛС используются направленные в вертикальной плоскости антенны. Интерференционные явления особенно сильно проявляются в диапазоне метровых и дециметровых волн.

С учетом рассмотренных явлений диаграмма направленности антенны в вертикальной плоскости приобретает изрезанный многолепестковый характер (рис.).

Кривизна земной поверхности ограничивает r max прямой видимости r пр. Полученное ранее выражение (2) может использоваться в том случае, когда r max < r пр. Если же рассчитанная по этой формуле максимальная дальность действия окажется больше, чем r пр, то r max = r пр. Затухание радиоволн в атмосфере может привести к уменьшению максимальной дальности РЛС. При использовании в РЛС радиоволн длиннее 10см даже при неблагоприятных метеоусловиях затухание их в атмосфере незначительно. По этой причине при определении r max РЛС дециметрового и метрового диапазонов затухание можно не учитывать. Волны миллиметрового и сантиметрового диапазонов испытывают заметное затухание и при расчете r max РЛС этих диапазонов его необходимо учитывать.

Минимальная дальность действия ПРЛС -- это расстояние, ближе которого она не способна обнаруживать объекты. Она ограничивается длительностью зондирующих импульсов ф и временем восстановления приемного тракта с учетом инерционности антенного переключателя t в и определяется выражением

r min = c·(ф+t в)/2.

Обычно r min можно оценить величиной в несколько сотен метров. Для РЛС дальнего обнаружения такая величина не имеет большого значения. Для РЛ обзора летного поля и метеолокаторов этот параметр имеет существенное значение, и принимаются специальные меры по его уменьшению.

Пределы обзора по азимуту и углу места. Границы зоны обзора РЛС по угловым координатам в горизонтальной и вертикальной плоскостях определяются назначением и типом РЛС. Обзорные РЛС различного назначения, как правило, осуществляют круговой обзор в горизонтальной плоскости. В вертикальной плоскости зона обзора этих РЛС ограничивается сектором в несколько десятков градусов, а нижняя граница располагается под углом в десятые доли градуса относительно горизонта. Перед посадочными РЛС ставится задача обслуживать довольно ограниченный сектор пространства, и зона обзора этих РЛС ограничена по углу, как в горизонтальной, так и в вертикальной плоскости значениями 10…30 0 .

Диаграмма видимости РЛС. Для грамотной эксплуатации РЛС необходимо знать зону ее действия. Поскольку зона обзора не является однородной, для ее характеристики следует задавать не одно значение максимальной дальности действия, а ряд значений для различных направлений в вертикальной плоскости или различных высот. Для наглядного представления зона обзора изображается графически. График зоны обзора называется диаграммой видимости, которая делит все пространство на две области. Область внутри диаграммы является частью пространства, в которой объекты наблюдаются с заданной вероятностью правильного обнаружения. В другой области пространства, находящейся вне диаграммы видимости объекты не обнаруживаются.

Для двухкоординатных РЛС диаграмма видимости строится в вертикальной плоскости и при этом наиболее часто используется прямоугольная система координат высота - наклонная дальность (рис.59).

В этой системе координат: -- по горизонтальной оси откладывается наклонная дальность r; по вертикальной - приведенные высоты Н пр .

Приведенной высотой называется высота расположения объекта над плоскостью горизонта (или радиогоризонта, если учитывается рефракция радиоволн), проведенной из точки размещения РЛС:

Н пр = r·sinв или Н пр = Н - r 2 /2R э,

где R э - эквивалентный радиус Земли (R э = 8500км).

Рис. 59. Диаграмма видимости РЛС в прямоугольной системе координат высота - дальность

1 - линии равных наклонных дальностей; 2 - диаграмма видимости; 3 - лини равных истинных высот; 4 - линии равных углов места; 5 - линии равных приведенных высот

Линии равных истинных высот в прямоугольной системе координат Н пр, r будут иметь вид парабол. Линии равных углов места в имеют вид прямых, проходящих через начало координат и точки с координатами r, H пр. Особенностью и достоинством прямоугольной системы координат является

то, что область малых углов места, которая имеет наибольшее значение для РЛС большой дальности действия, представляется крупным планом. Максимальные дальности действия на заданных высотах определяются точками пересечения линий равных высот с диаграммой видимости, а точки пересечения этих линий с горизонтальной осью определяют дальность прямой видимости r пр.

Разрешающая способность по дальности определяется минимальным расстоянием Дr между двумя объектами, расположенными в одном радиальном направлении относительно РЛС, наблюдение которых на индикаторе может осуществляться раздельно. Разрешающая способность по дальности зависит от длительности зондирующего импульса ф и ряда параметров индикатора:

Дr = c·ф /2 + d п ·M / L р,

где d п - диаметр светового пятна на экране индикатора; L р - длина линии развертки; М - масштаб развертки по дальности.

Первое слагаемое определяет потенциальную разрешающую способность РЛС по дальности, которая зависит только от длительности зондирующего импульса. Второе слагаемое представляет разрешающую способность индикатора. Соотношение между потенциальной разрешающей способностью и разрешающей способностью индикатора в различных типах РЛС может быть различным.

Разрешающая способность по азимуту определяется минимальным углом в горизонтальной плоскости Дб между направлениями на два равноудаленных от РЛС объекта, при котором на индикаторе они наблюдаются раздельно

Эта разрешающая способность

Дб = И + d п ·M / L р ·r,

где И - ширина диаграммы направленности антенны в горизонтальной плоскости.

Первый член правой части этой формулы определяет потенциальную разрешающую способность РЛС по азимуту, которая зависит только от ширины диаграммы направленности в горизонтальной плоскости. ЧЕМ уже антенный луч, тем выше разрешающая способность по углу. Второе слагаемое представляет разрешающую способность по азимуту индикаторного устройства РЛС. Она определяется теми же параметрами индикатора, что и разрешающая способность по дальности, но дополнительно зависит от расстояния до объектов. Чем ближе располагаются объекты от РЛС, тем хуже разрешающая способность по азимуту. Для достижения наибольшей разрешающей способности надо выбирать масштаб развертки так, чтобы отметки от объектов наблюдались в конце линии развертки.

Точность измерения координат .

Точность измерения дальности. Измерение дальности сопровождаются рядом погрешностей, которые вызываются следующими причинами: нестабильностью скорости распространения радиоволн и искривлением траектории их распространения в атмосфере земли (погрешности, вызываемые этими причинами, называются погрешностями распространения ); влиянием шумовых и других помех, воздействующих на РЛС (шумовые погрешности ); несовершенством РЛС как технического устройства (инструментальные погрешности ); влиянием отражающих свойств реальных целей, состоящих из большого числа элементарных отражателей (погрешности цели ). Для РЛС, имеющих в качестве выходных устройств электронно-лучевые индикаторы, основное значение имеют инструментальные и в некоторых случаях шумовые погрешности.

К инструментальным погрешностям относятся погрешности калибровки и градуировки, отсчета, интерполяции и т.п. ОНИ полностью определяются устройством конкретной РЛС, многие из них можно найти только экспериментально. Среди инструментальных погрешностей следует выделить погрешность отсчета дальности, которая в известной степени определяется квалификацией оператора. В большинстве РЛС определение дальности производится по индикатору с помощью масштабных меток дальности. Оператор на глаз определяет положение отметки цели между метками дальности при этом СКП отсчета

уr 0 = (0,05...0,1)r м,

где r - расстояние между соседними масштабными метками дальности.

Опыт показывает, что средние квадратические значения погрешностей измерения дальности (СКП) оказываются равными: для трассовых ПРЛС -- 0,01r, для аэродромных ПРЛС -- 0,03r или 150 м (большая из указанных величин). Таким образом, СКП определения линии положения с помощью расовых ПРЛС равна 3,4 км на дальности 340 км и 0,5 км на дальности 50 км. СКП определения дальности с помощью аэродромных ПРЛС составляет 4,5 км на дальности 150 км и 1,5 км на дальности 50 км.

Точность измерения угловых координат. НА точность определения угловых координат в основном оказывают влияние инструментальные погрешности. К ним относятся погрешности формирования угловой развертки индикатора, образующиеся вследствие погрешностей синхронно-следящей системы, люфтов в механических редукторах, несовпадения оси антенны с осью симметрии луча антенны, погрешности формирования азимутальных меток и погрешности отсчета угловой координаты на индикаторе.

СКП отсчета азимута по индикатору зависит от углового размера отметки объекта, который примерно равен ширине ДНА И, и от углового интервала между азимутальными метками б м , т.е.

уб 0 = (0,05…0,1).

СКП определения азимута для трассовых ПРЛС равна 0,5 0 , для аэродромных - 2 0 . Соответствующие значения СКП определения линии положения на удалениях 340 км и 50 км для трассовых ПРЛС будут 3,4 км и 0,5 км, для аэродромных - 6 км на дальности 150 км и 2 км - на удалении 50 км.

Следует отметить, что точность определения места ВС с помощью ПРЛС зависит, прежде всего, от дальности до него и оценивается погрешностями, СКП которых имеет порядок единиц километров.

Из приводимых данных видно, что ПРЛС уступают по точности системам ближней навигации и значительно менее точны, чем спутниковые системы радионавигации.

Защита ПРЛС от помех

НА работу ПРЛС существенное влияние оказывают мешающие сигналы различного происхождения, называемыми помехами. В частности, кроме полезных сигналов, отражаемых ВС, возникают мешающие сигналы, появляющиеся из-за отражений от подстилающей поверхности, местных предметов и метеообразований, причем уровень этих сигналов значительно выше уровня полезного сигнала, так как создающие их объекты расположены вблизи от ПРЛС. Сигналы из-за мешающих отражений называются пассивными помехами . На работу ПРЛС оказывают мешающее воздействие работа сторонних РЛС и помехи индустриального и атмосферного происхождения. Помехи указанных видов называются активными. Помехи скрывают слабый полезный сигнал, либо создают фон, препятствующий его обнаружению и проведению измерений. Поэтому возникает необходимость реализаций мероприятий по защите ПРЛС от помех.

Защита от помех основывается на выявлении отличий параметров мешающих сигналов от полезных и разделении (селектировании) полезных сигналов и помех в интересах подавления. Рассмотрим основные методы защиты ПРЛС от помех.

Селекция движущихся целей (СДЦ) позволяет ослабить влияние отражений от подстилающей поверхности, местных предметов и облачных образований. Она состоит в разделении сигналов от ВС и неподвижных объектов из-за различия частот колебаний, отраженных этими объектами. Различие частот обусловлено доплеровским эффектом, который проявляется в том, что если расстояние между объектом отражения и ПРЛС изменяется, то частота сигнала принятого (отраженного) от такого объекта будет отличаться от частоты сигналов, излучаемых ПРЛС. Разница частот (доплеровский сдвиг) пропорциональна радиальной скорости движения отражающего объекта и обратно пропорциональна длине волны, на которой ведется излучение

Следовательно, доплеровский сдвиг отличен от нуля при отражении от объектов, движущихся и имеющих? 0, и равен 0 при отражении от неподвижных образований или объектов, движущихся по круговой траектории относительно ПРЛС. При этом в случае приближения ВС < 0 и F Д > 0, в случае удаления знак доплеровского сдвига меняется на противоположный, доплеровский сдвиг отсутствует при отражении от подстилающей поверхности и близок к нулю -- при отражении от медленно движущихся облаков.

В ПРЛС используется импульсный режим излучения, поэтому доплеровский сдвиг будет проявляться в изменении амплитуды импульсных сигналов, получаемых в результате преобразования в специальной аппаратуре СДЦ, которая входит в состав ПРЛС. При приеме пассивной помехи эти сигналы имеют постоянную амплитуду, поскольку F Д = 0 (рис.60,а2).

Рис. 60. Временные диаграммы процессов в аппаратуре СДЦ:

а - временные диаграммы отраженных сигналов после преобразования: 1 - полезный сигнал; 2 - пассивная помеха; б - упрощенная схема ФЧПК; в - форма полезного сигнала на выходе ФЧПК

В том случае, когда принимается полезный сигнал, импульсные сигналы будут иметь переменную амплитуду, изменяющуюся по закону F Д (рис.60,а1). Важным элементом аппаратуры СДЦ является фильтр ЧПК, который не должен пропускать импульсы пассивной помехи. Этот фильтр (рис.60,б) состоит из схемы задержки на время, равное периоду повторения импульсов Т и, схемы вычитания СВ и двухполупериодного выпрямителя - детектора ДпД. Отраженные импульсные сигналы после преобразования поступают на СВ непосредственно и через схему задержки. Это значит, что в СВ каждый импульс сравнивается по амплитуде с предшествующим импульсом. Если на фильтр поступают импульсы постоянной амплитуды (пассивная помеха), то в СВ импульсы компенсируются и на ее выходе сигнал отсутствует, т.е.пассивная помеха на индикатор не поступает. Если на фильтр поступают импульсы с переменной амплитудой (полезный сигнал) то на выходе СВ образуются импульсы также переменной амплитуды, поскольку теперь каждый импульс отличается по амплитуде от соседнего предшествующего импульса. Выпрямитель ДпД превращает разнополярные импульсы с выхода СВ в импульсы одной полярности (рис.60,в), которые подаются на индикатор и создают отметки ВС. Таким образом, в результате работы аппаратуры СДЦ на индикатор должны поступать только полезные сигналы, отраженные движущимися объектами, а пассивная помеха не проходит через фильтр ЧПК.

Работа РЛС с СДЦ имеет некоторые особенности. Огибающая последовательности импульсов, поступающих на схему ЧПК имеет истинную доплеровскую частоту F Д только в том случае, когда частота повторения зондирующих импульсов ПРЛС F и? 2F Д. В противном случае частота огибающей импульсов отличается от F Д и называется кажущейся доплеровской частотой F ДК. До тех пор, пока F Д? F и /2, кажущаяся доплеровская частота равна истинной доплеровской частоте. При дальнейшем увеличении F Д частота F ДК начинает уменьшаться и достигает нуля при F Д = F и. В общем случае

F ДК = 0 всегда, когда выполняется условие F Д = n·F и, где n=1,2,3... Указанное явление приводит к тому, что некоторые движущиеся цели не будут отображаться на индикаторе. Это происходит в тех случаях, когда F Д = n·F и. При этом F ДК = 0 и подвижные объекты создают на выходе приемника ПРЛС такие же сигналы, как и пассивные помехи, т.е. импульсы постоянной амплитуды, которые не проходят через ФЧПК схемы СДЦ.

Доплеровским частотам F Д = n·F и соответствуют некоторые радиальные скорости движения объектов W r c = n·F·л/2, где n = 0,1,2,3 и т.д. Эти скорости называют слепыми , поскольку объекты с такими скоростями в РЛС с СДЦ не наблюдаются. Слепые скорости могут быть устранены при одновременной работе РЛС на нескольких различных частотах повторения импульсов или при использовании переменной F и, что приводит к усложнению аппаратуры СДЦ и всей ПРЛС.

Другая особенность РЛС с СДЦ состоит в том, что такая станция не наблюдает объекты, движущиеся без изменения расстояния относительно РЛС или при малых скоростях изменения расстояния. Для того чтобы иметь возможность наблюдать такие объекты в ПРЛС имеется два режима работы: СДЦ и “пассивный”. В режиме “пассивный” аппаратура СДЦ отключается и на индикатор поступают все отраженные сигналы, в том числе и пассивная помеха.

Поляризационная селекция. Подавление пассивных помех, отраженных атмосферными образованиями, может быть достигнуто путем использования различия между полезными сигналами и помехами в их поляризации. Для этого в РЛС применяют радиоволны с круговой и эллиптической поляризациями, которые создаются с помощью специального устройства, расположенного в антенно-фидерном тракте. Излучаемая радиоволна с круговой поляризацией (рис.61,а) характеризуется тем, что вектор электрического поля Е вращается с постоянной угловой скоростью, равной несущей частоте сигнала щ, так что конец вектора описывает окружность. При отражении такой радиоволны от мелких частиц сферической формы ее поляризация остается круговой, но с противоположным направлением вращения вектора Е отр (рис.61,б). Такая радиоволна не проходит поляризационное устройство и поэтому пассивные помехи, созданные атмосферными образованиями, состоящими из мелких частиц сферической формы, не принимаются ПРЛС. При отражении радиоволн с круговой поляризацией от объектов неправильной геометрической формы (например, от ВС) ее поляризация становится эллиптической (рис.61,в), при которой вращающийся вектор Е отр изменяет свою величину и его конец описывает эллипс. Волна с такой поляризацией проходит через поляризационное устройство, но с ослаблением, и поэтому ПРЛС принимает полезные сигналы, хотя дальность действия уменьшается. Поляризационная селекция наиболее эффективно действует при подавлении пассивных помех, образованных туманом, дождем и водными облаками. Помехи, отраженные от снега, града и ледяных облаков, ослабляются в меньшей степени. Иногда больший эффект достигается при использовании излучаемых радиоволн эллиптической поляризацией

Селекция по частоте повторения импульсов используется для борьбы с несинхронными помехами, т. е. такими импульсными сигналами, частота повторения которых отличается от частоты повторения полезных сигналов. Схема селекции по частоте повторения, представляющая фильтр несинхронных помех, устанавливается между приемником и индикатором. В этом фильтре (рис.46,а) осуществляется задержка принимаемых сигналов точно на период следования и их сравнение с задержанными сигналами. Схема совпадения “И” вырабатывает сигнал на выходе, если поступающие на ее два входа импульсы совпадают во времени. Если принимаются сигналы, частота F и которых равна частоте повторения зондирующих импульсов данной РЛС, то задержанные на время t з = Т и импульсы и незадержанные импульсы появляются в одно и то же время и со схемы “И” сигналы проходят на индикатор (рис.62,б). Таким образом, сигналы данной РЛС проходят через фильтр несинхронных помех. Когда РЛС принимает сигналы, период повторения которых Т п? T и, то задержанные на время t з = Т и импульсы уже не будут совпадать с незадержанными, и на выходе схемы “И” по этой причине никаких импульсов не будет (рис.62,в). Это значит, что несинхронная помеха не пропускается фильтром и не воздействует на индикатор.


Требования к основным характеристикам ПРЛС

Таблица 11

Параметр

Аэродромные

Трассовые

Дальность действия, км (по ВС с ЭПР 15 м2)

Максимальная высота зоны действия, м

Пределы зоны обзора по углу места, град.

Вероятность правильного обнаружения

Вероятность ложной тревоги

СКП измерения дальности (большая из величин)

3% r или 150 м

СКП измерения азимута на максимальной дальности

Разрешающая способность по дальности (большая из величин)

1% r или 230 м

Разрешающая способность по азимуту на максимальной дальности, град.

Время обзора, с

Время перехода на резерв, с

В таблице 12 приведены основные характеристики отечественных обзорных РЛС. Сравнение данных таблиц 11 и 12 позволяет сделать вывод, что характеристики реальных обзорных РЛС по некоторым позициям отличаются от рекомендуемых. В частности, дальность действия эксплуатируемых в России ПРЛС значительно превышают стандарты, принятые в ИКАО. Причина этого состоит в том, что ГА вынуждена использовать образцы ПРЛС, разработанные для целей обороны и отличающимися повышенными возможностями по сравнению с ПРЛС гражданского назначения.

Таблица 12

Характеристика

“Скала-М/МПР”

“Иртыш”

“Экран-85”

“Скала-МПА”

“Онега”

Максимальная дальность (по ВС с ЭПР 10 м2), км

Вероятность обнаружения

Минимальная дальность, км

Максимальная высота обнаружения, км

Пределы зоны обзора по углу места, град

Разрешающая способность:

по дальности, м

по азимуту, град

Темп обновления информации, с

Длина волны, см

Наработка на отказ, ч

Средний ресурс, тыс.ч

СКП измерения:

дальности, м

азимута, град

Изобретение относится к области радиолокации и может быть использовано при разработке перспективных РЛС. Достигаемым техническим результатом является увеличение надежности обнаружения объекта. Для этого в известном способе контроля воздушного пространства, заключающемся в его обзоре с помощью РЛС, дополнительно принимают отраженную энергию внешнего радиоэлектронного средства (РЭС), определяют границы зоны, в которой отношение отраженной объектом энергии РЭС к шуму больше порогового значения, и излучают сигнал РЛС только в те направления зоны, в которых обнаружена отраженная энергия РЭС.

Изобретение относится к области радиолокации и может быть использовано при разработке перспективных РЛС. Для обеспечения контроля воздушного пространства необходимо обнаруживать объект с высокой надежностью и измерять его координаты с требуемой точностью. Известен способ обнаружения объекта с помощью пассивных многопозиционных систем, использующих облучение объекта за счет энергии внешних радиоэлектронных средств (РЭС), например телецентров или даже источников природного характера: молний, солнца, некоторых звезд . Обнаружение объекта и измерение его координат в этом способе осуществляют за счет приема отраженной объектом энергии (сигналов) внешних источников в разнесенных точках и совместной обработки принятых сигналов. Преимущество такого способа состоит в том, что для его функционирования не требуется затрат энергии на облучение объекта. Кроме того, известно, что эффективная площадь рассеяния объекта при бистатической радиолокации на просвет в зоне существования просветного эффекта на 3-4 порядка больше по сравнению с моностатической . Это означает, что объект может быть обнаружен при облучении его на просвет сравнительно малым уровнем энергии РЭС. Недостатки способа состоят в следующем: - для реализации способа необходимо иметь несколько разнесенных приемных позиций с обеспечением системы связи между ними, поскольку при наличии одной позиции можно обнаружить лишь признак наличия объекта, а для измерения его координат нужно не менее трех; - могут быть использованы только РЭС с сигналом, имеющим ширину спектра, достаточную для обеспечения разрешения объектов по дальности ; - невозможно обеспечить контроль всего пространства при использовании РЭС с реальным энергетическим потенциалом, т.к. невозможно обеспечить требуемое отношение отраженная объектом энергия РЭС/шум при произвольном положении объекта в контролируемом пространстве, поскольку как показано в (графики на рис. 3, с. 426), просветный эффект действует при углах дифракции примерно 6 градусов. Наиболее близким техническим решением является способ контроля воздушного пространства с помощью РЛС, когда излучают зондирующий сигнал последовательно во все направления контролируемого пространства и по принятому отраженному объектом сигналу обнаруживают его и измеряют его координаты. Как правило, для этого используют РЛС с игольчатой формой диаграммы направленности антенны в S-диапозоне, например, РЛС RAT-31S (Радиоэлектроника за рубежом, 1980, 17, с. 23). Недостаток такого способа состоит в том, что даже при игольчатом луче концентрация энергии при осмотре каждого направления недостаточна для обнаружения малозаметного объекта, поскольку за короткий период обзора (единицы секунд) требуется осмотреть контролируемое пространство, состоящее из тысяч направлений. Это снижает надежность обнаружения объекта. Увеличить ее можно за счет увеличения концентрации энергии в осматриваемом направлении путем увеличения потенциала РЛС. Для мобильных РЛС это не представляется возможным. Увеличение концентрации энергии в осматриваемом направлении при сохранении энергии можно достичь за счет сокращения числа направлений осмотра, что также не представляется возможным, т.к. сокращенные направления выпадут из под контроля. Предлагаемое изобретение направлено на решение задачи увеличения надежности обнаружения объекта при сохранении энергетического потенциала РЛС. Задача решается за счет сокращения числа направлений осмотра с помощью РЛС в тех зонах пространства, при нахождении в которых объекта, обеспечивается надежный прием отраженной им энергии внешних РЭС. Указанный результат достигается тем, что в известном способе контроля воздушного пространства, заключающемся в его обзоре с помощью РЛС, согласно изобретению дополнительно принимают отраженную энергию внешнего радиоэлектронного средства (РЭС), определяют границы зоны, в которой отношение отраженной объектом энергии РЭС к шуму больше порогового значения, и излучают сигнал РЛС только в те направления зоны, в которых обнаружена отраженная энергия РЭС. Суть изобретения состоит в следующем. Определяют конкретное РЭС с известными параметрами, энергия которого будет использована для обнаружения объекта (например, спутник телевидения, связи или наземное РЭС). Определяют величину отношения отраженная объектом энергия РЭС/шум (т.е. отношение сигнал/шум) в точке приема по формуле (ЛЗ, формула 1, с. 425): где Q= P C /P Ш - отношение сигнал/шум; P T - средняя мощность передающего устройства РЭС; G T , G R - коэффициенты усиления соответственно передающей и приемной антенн; - длина волны; - обобщенные потери; ( B , Г)) - ЭПР объекта для двухпозиционной системы как функция от углов дифракции B и Г; F(,) F(,) - ДН передающей и приемной антенн; Р Ш - средняя мощность шумов в полосе приемного устройства с учетом порога обнаружения; R T , R R - расстояние от РЭС и приемного устройства до объекта соответственно. Для значения Q, превышающего пороговое значение, т.е. обеспечивающего требуемую надежность обнаружения отраженной объектом энергии РЭС, определяют граничные значения B , Г, которые и берут в качестве границ зоны, при расположении в которой объекта отношение отраженная объектом энергия РЭС/шум больше порогового значения. В случае использования стабильно работающего РЭС зона, где Q превышает пороговое значение, может быть определена экспериментально путем набора статистики при обзоре зоны одновременно в пассивном режиме и с помощью РЛС. При этом определяют границы зоны, в которой обнаруживают с требуемой надежностью отраженную энергию РЭС объектом, обнаруженным РЛС. После определения границ, зону осматривают в пассивном режиме с помощью приемной антенны в диапазоне частот выбранного РЭС известным способом (см., например, ), РЛС для обзора этой зоны не используется. при обнаружении в некотором направлении o , o , входящем в зону, отраженной объектом энергии РЭС принимают решение об обнаружении в этом направлении признака нахождения объекта и излучает в этом направлении сигнал РЛС, в активном режиме обнаруживают объект и измеряют его координаты. Таким образом, число направлений, осматриваемых с помощью РЛС, будет сокращено; за счет этого может быть увеличена концентрация энергии РЛС при осмотре направлений пространства, что увеличит надежность обнаружения объекта. Следует отметить, что энергию внешнего РЭС в предлагаемом изобретении используют лишь для обнаружения признака наличия объекта, в отличие, например, от способа, описанного в , где она используется для обнаружения объекта и измерения его координат. Это устраняет основные недостатки способа использования внешнего РЭС, отмеченные в , и снижает требования к параметрам излучения РЭС.

Формула изобретения

Способ контроля воздушного пространства, заключающийся в его обзоре с помощью РЛС, отличающийся тем, что дополнительно принимают отраженную объектом энергию внешнего радиоэлектронного средства (РЭС), определяют границы зоны, в которой отношение отраженной объектом энергии РЭС к шуму больше порогового значения, и излучают сигнал РЛС только в те направления зоны, в которых обнаружена отраженная энергия РЭС.

Другие изменения, связанные с зарегистрированными изобретениями

Изменения:Зарегистрирован переход исключительного права без заключения договораДата и номер государственной регистрации перехода исключительного права: 12.03.2010/РП0000606Патентообладатель: Открытое акционерное общество "Научно-исследовательский институт измерительных приборов"
Прежний патентообладатель: Федеральное государственное унитарное предприятие "Научно-исследовательский институт измерительных приборов"

Номер и год публикации бюллетеня: 30-2003

Похожие патенты:

Изобретение относится к радиотехническим средствам пассивной локации для определения местоположения источников импульсного электромагнитного излучения и может быть использовано для измерения местоположения грозовых разрядов на расстояниях 300-2000 км в метеорологии и в гражданской авиации для повышения безопасности полетов

Изобретение относится к радиотехнике и предназначено для прецизионного определения высоты полета ИСЗ, параметров гравитационного поля Земли, определения фигуры геоида, рельефа поверхности суши, топографии ледовых полей и океана, в частности высоты неровностей подстилающей поверхности и океанических волн

ВОЕННАЯ МЫСЛЬ № 3(5-6)/1997

О некоторых проблемах контроля за соблюдением порядка использования воздушного пространства

Генерал-полковник В.Ф.МИГУНОВ,

кандидат военных наук

Полковник А.А.ГОРЯЧЕВ

ГОСУДАРСТВУ принадлежит полный и исключительный суверенитет в отношении воздушного пространства над его территорией и территориальными водами. Использование воздушного пространства Российской Федерации регламентируется законами, согласующимися с международными нормами, а также нормативно-правовыми документами Правительства и отдельных ведомств в пределах их компетенции.

Для организации рационального использования воздушного пространства страны, управления воздушным движением, обеспечения безопасности полетов, контроля за соблюдением порядка его использования создана Единая система управления воздушным движением (ЕС УВД). Соединения и части Войск противовоздушной обороны как пользователи воздушного пространства входят в состав объектов управления этой системы и в своей деятельности руководствуются едиными для всех нормативно-правовыми документами. В то же время готовность к отражению внезапного нападения воздушного противника обеспечивается не только непрерывным изучением расчетами командных пунктов Войск ПВО складывающейся обстановки, но и осуществлением контроля за порядком использования воздушного пространства. Правомерен вопрос: нет ли здесь дублирования функций?

Исторически сложилось так, что в нашей стране радиолокационные системы ЕС УВД и Войск ПВО возникли и развивались в большой степени независимо одна от другой. В ряду причин этого - различия в потребностях обороны и народного хозяйства, объемах их финансирования, значительные размеры территории, ведомственная разобщенность.

Данные о воздушной обстановке в системе УВД используются для выработки команд, передаваемых на борт воздушных судов и обеспечивающих их безопасный полет по заранее запланированному маршруту. В системе ПВО они служат для выявления летательных аппаратов, нарушивших государственную границу, управления войсками (силами), предназначенными для уничтожения воздушного противника, наведения средств поражения и радиоэлектронной борьбы на воздушные цели.

Поэтому принципы построения указанных систем, а следовательно, и их возможности значительно различаются. Существенно то, что позиции радиолокационных средств ЕС УВД располагаются вдоль воздушных трасс и в районах аэродромов, создавая поле управления с высотой нижней границы около 3000 м. Радиотехнические подразделения ПВО размещены прежде всего вдоль государственной границы, а нижняя кромка создаваемого ими радиолокационного поля не превышает минимальную высоту полета летательных аппаратов потенциального противника.

Система контроля Войск ПВО за порядком использования воздушного пространства сложилась в 60-е годы. Ее базу составляют радиотехнические войска ПВО, разведывательно-информационные центры (РИЦ) КП соединений, объединений и Центрального командного пункта Войск ПВО. В процессе контроля решаются следующие задачи: обеспечение КП частей, соединений и объединений ПВО данными о воздушной обстановке в их зонах ответственности; своевременное выявление летательных аппаратов, принадлежность которых не установлена, а также иностранных воздушных судов-нарушителей государственной границы; выявление летательных аппаратов, нарушающих порядок использования воздушного пространства; обеспечение безопасности полетов авиации ПВО; содействие органам ЕС УВД в оказании помощи воздушным судам, оказавшимся в форс-мажорных обстоятельствах, а также поисково-спасательным службам.

Слежение за порядком использования воздушного пространства осуществляется на основе радиолокационного и диспетчерского контроля: радиолокационный заключается в сопровождении воздушных судов, установлении их государственной принадлежности и других характеристик с помощью радиолокационных средств; диспетчерский - в определении расчетного местоположения воздушных судов на основе плана (заявок на полеты, расписаний движения) и сообщений о фактических полетах, . поступающих на командные пункты Войск ПВО от органов ЕС УВД и ведомственных пунктов управления в соответствии с требованиями Положения о порядке использования воздушного пространства.

При наличии данных радиолокационного и диспетчерского контроля по воздушному судну производится их отождествление, т.е. устанавливается однозначная связь между информацией, полученной инструментальным способом (координаты, параметры движения, данные радиолокационного опознавания), и сведениями, содержащимися в извещении о полете данного объекта (номер рейса или заявки, бортовой номер, исходный, промежуточные и конечный пункты маршрута и др.). В случае если не удалось отождествить радиолокационную информацию с планово-диспетчерской, то обнаруженное воздушное судно классифицируется как нарушитель порядка использования воздушного пространства, данные о нем немедленно передаются взаимодействующему органу УВД и принимаются адекватные обстановке меры. При отсутствии связи с нарушителем или когда командир воздушного судна не выполняет распоряжения диспетчера, истребители ПВО осуществляют его перехват и сопровождение до назначенного аэродрома.

В числе проблем, оказывающих наиболее сильное влияние на качество функционирования системы контроля, следует в первую очередь назвать недостаточную разработанность нормативно-правовой базы, регламентирующей использование воздушного пространства. Так, неоправданно затянулся процесс определения статуса границы России с Белоруссией, Украиной, Грузией, Азербайджаном и Казахстаном в воздушном пространстве и порядка контроля за ее пересечением. В результате возникшей неопределенности выяснение принадлежности воздушного судна, осуществляющего полет со стороны указанных государств, заканчивается тогда, когда оно находится уже в глубине территории России. При этом в соответствии с действующими инструкциями часть дежурных сил ПВО приводится в готовность №1, включаются в работу дополнительные силы и средства, т.е. неоправданно расходуются материальные ресурсы и создается излишняя психологическая напряженность у лиц боевых расчетов, чреватая самыми серьезными последствиями. Частично данная проблема решается в результате организации совместного боевого дежурства с силами ПВО Белоруссии и Казахстана. Однако полное ее решение возможно только при замене действующего Положения о порядке использования воздушного пространства новым, учитывающим сложившуюся ситуацию.

С начала 90-х годов условия выполнения задачи контроля за порядком использования воздушного пространства неуклонно ухудшаются. Это обусловлено сокращением численности радиотехнических войск и, как следствие, количества подразделений, причем в первую очередь были расформированы те из них, содержание и обеспечение боевого дежурства которых требовало больших материальных затрат. Но именно эти подразделения, располагавшиеся на морском побережье, на островах, сопках и в горах, имели наибольшую тактическую значимость. Кроме того, недостаточный уровень материального обеспечения привел к тому, что оставшиеся подразделения значительно чаще, чем раньше, теряют боеспособность из-за отсутствия горючего, запасных частей и др. В результате возможности РТВ по осуществлению радиолокационного контроля на малых высотах вдоль границ России значительно снизились.

В последние годы заметно уменьшилось количество аэродромов (посадочных площадок), имеющих прямую связь с ближайшими к ним командными пунктами Войск ПВО. Поэтому сообщения о фактических полетах поступают по обходным каналам связи с большими задержками или не поступают вовсе, что резко снижает достоверность диспетчерского контроля, затрудняет отождествление радиолокационной и планово-диспетчерской информации, не позволяет эффективно использовать средства автоматизации.

Дополнительные проблемы возникли в связи с образованием многочисленных авиапредприятий и появлением авиационной техники в частной собственности отдельных лиц. Известны факты, когда полеты выполняются не только без извещения Войск ПВО, но и без разрешения органов УВД. На региональном уровне существует разобщенность предприятий в вопросах использования воздушного пространства. Коммерционализация деятельности авиапредприятий сказывается даже на представлении ими расписаний движения воздушных судов. Типичной стала ситуация, когда они требуют их оплаты, а войска не располагают средствами для этих целей. Проблема решается путем изготовления неофициальных выписок, которые своевременно не обновляются. Естественно, снижается качество контроля за соблюдением установленного порядка использования воздушного пространства.

Определенное влияние на качество функционирования системы контроля оказали изменения в структуре воздушного движения. В настоящее время наблюдается тенденция роста международных рейсов и полетов вне расписаний, а следовательно, и загруженности соответствующих линий связи. Если учесть, что основным оконечным устройством каналов связи на КП ПВО являются устаревшие телеграфные аппараты, то становится очевидным, почему резко возросло количество ошибок при приеме извещений о планируемых полетах, сообщений о вылетах и др.

Предполагается, что перечисленные проблемы частично будут решены по мере развития Федеральной системы разведки и контроля воздушного пространства, и особенно при переходе к Единой автоматизированной радиолокационной системе (ЕАРЛС). В результате объединения ведомственных радиолокационных систем впервые появится возможность использовать общую информационную модель воздушного движения всеми органами, подключенными к ЕАРЛС в качестве потребителей данных о воздушной обстановке, в том числе командными пунктами Войск ПВО, ПВО Сухопутных войск, ВВС, ВМФ, центрами ЕС УВД, другими ведомственными пунктами управления воздушным движением.

В процессе теоретической проработки вариантов применения ЕАРЛС возник вопрос о целесообразности и в дальнейшем возлагать на Войска ПВО задачу контроля за порядком использования воздушного пространства. Ведь органы ЕС УВД будут иметь ту же информацию о воздушной обстановке, что и расчеты командных пунктов Войск ПВО, и на первый взгляд достаточно контроль осуществлять только силами центров ЕС УВД, которые, имея непосредственную связь с воздушными судами, способны быстрее разобраться в обстановке. В этом случае отпадает необходимость в передаче на командные пункты Войск ПВО большого объема планово-диспетчерской информации и дальнейшем отождествлении ими радиолокационной информации и расчетных данных о местоположении воздушных судов.

Однако Войска ПВО, находясь на страже воздушных рубежей государства, в вопросе выявления воздушных судов - нарушителей государственной границы не могут полагаться исключительно на ЕС УВД. Параллельное решение этой задачи на командных пунктах Войск ПВО и в центрах ЕС УВД сводит к минимуму вероятность ошибки и обеспечивает устойчивость системы контроля при переходе с мирного положения на военное.

Имеется и другой довод в пользу сохранения существующего порядка на длительную перспективу: дисциплинирующее влияние системы контроля Войск ПВО на органы ЕС УВД. Дело в том, что суточный план полетов отслеживается не только зональным центром ЕС УВД, но и расчетом группы контроля соответствующего командного пункта Войск ПВО. Это касается и многих других вопросов, связанных с полетами воздушных судов. Такая организация способствует оперативному выявлению нарушений порядка использования воздушного пространства и их своевременному устранению. Трудно дать количественную оценку влиянию системы контроля Войск ПВО на безопасность полетов, но практика свидетельствует о прямой связи между надежностью контроля и уровнем безопасности.

В процессе реформирования Вооруженных Сил объективно существует опасность разрушения созданных ранее и достаточно отлаженных систем. Проблемы, рассмотренные в статье, весьма специфичны, однако они тесно связаны с такими крупными государственными задачами, как охрана границ и организация воздушного движения, которые будут актуальны и в обозримом будущем. Поэтому сохранение боеспособности радиотехнических войск, составляющих основу Федеральной системы разведки и контроля воздушного пространства, должно быть проблемой не только Войск ПВО, но и других заинтересованных ведомств.

Для комментирования необходимо зарегистрироваться на сайте

настоящих Федеральных правил

144. Контроль за соблюдением требований настоящих Федеральных правил осуществляется Федеральным агентством воздушного транспорта, органами обслуживания воздушного движения (управления полетами) в установленных для них зонах и районах.

Контроль за использованием воздушного пространства Российской Федерации в части выявления воздушных судов - нарушителей порядка использования воздушного пространства (далее - воздушные суда-нарушители) и воздушных судов - нарушителей правил пересечения государственной границы Российской Федерации осуществляется Министерством обороны Российской Федерации.

145. В случае если органом обслуживания воздушного движения (управления полетами) выявляется нарушение порядка использования воздушного пространства Российской Федерации, информация об указанном нарушении немедленно доводится до сведения органа противовоздушной обороны и командира воздушного судна, если с ним установлена радиосвязь.

146. Органы противовоздушной обороны обеспечивают радиолокационный контроль воздушного пространства и представляют соответствующим центрам Единой системы данные о движении воздушных судов и других материальных объектов:

а) угрожающих незаконным пересечением или незаконно пересекающих государственную границу Российской Федерации;

б) являющихся неопознанными;

в) нарушающих порядок использования воздушного пространства Российской Федерации (до момента прекращения нарушения);

г) передающих сигнал "Бедствие";

д) выполняющих полеты литеров "A" и "K";

е) выполняющих полеты для проведения поисково-спасательных работ.

147. К нарушениям порядка использования воздушного пространства Российской Федерации относятся:

а) использование воздушного пространства без разрешения соответствующего центра Единой системы при разрешительном порядке использования воздушного пространства, за исключением случаев, указанных в пункте 114 настоящих Федеральных правил;

б) несоблюдение условий, доведенных центром Единой системы в разрешении на использование воздушного пространства;

в) невыполнение команд органов обслуживания воздушного движения (управления полетами) и команд дежурного воздушного судна Вооруженных Сил Российской Федерации;

г) несоблюдение порядка использования воздушного пространства приграничной полосы;

д) несоблюдение установленных временного и местного режимов, а также кратковременных ограничений;

е) полет группы воздушных судов в количестве, превышающем количество, указанное в плане полета воздушного судна;

ж) использование воздушного пространства запретной зоны, зоны ограничения полетов без разрешения;

з) посадка воздушного судна на незапланированный (незаявленный) аэродром (площадку), кроме случаев вынужденной посадки, а также случаев, согласованных с органом обслуживания воздушного движения (управления полетами);

и) несоблюдение экипажем воздушного судна правил вертикального и горизонтального эшелонирования (за исключением случаев возникновения на борту воздушного судна аварийной ситуации, требующей немедленного изменения профиля и режима полета);

(см. текст в предыдущей редакции)

к) несанкционированное органом обслуживания воздушного движения (управления полетами) отклонение воздушного судна за пределы границ воздушной трассы, местной воздушной линии и маршрута, за исключением случаев, когда такое отклонение обусловлено соображениями безопасности полета (обход опасных метеорологических явлений погоды и др.);

л) влет воздушного судна в контролируемое воздушное пространство без разрешения органа обслуживания воздушного движения (управления полетами);

М) полет воздушного судна в воздушном пространстве класса G без уведомления органа обслуживания воздушного движения.

148. При выявлении воздушного судна-нарушителя органы противовоздушной обороны подают сигнал "Режим", означающий требование о прекращении нарушения порядка использования воздушного пространства Российской Федерации.

Органы противовоздушной обороны доводят сигнал "Режим" до соответствующих центров Единой системы и приступают к действиям по прекращению нарушения порядка использования воздушного пространства Российской Федерации.

(см. текст в предыдущей редакции)

Центры Единой системы предупреждают командира воздушного судна-нарушителя (при наличии с ним радиосвязи) о поданном органами противовоздушной обороны сигнале "Режим" и оказывают ему помощь в прекращении нарушения порядка использования воздушного пространства Российской Федерации.

(см. текст в предыдущей редакции)

149. Решение о дальнейшем использовании воздушного пространства Российской Федерации, если командиром воздушного судна-нарушителя прекращено нарушение порядка его использования, принимают:

а) начальник дежурной смены главного центра Единой системы - при выполнении международных полетов по маршрутам обслуживания воздушного движения;

б) начальники дежурных смен регионального и зонального центров Единой системы - при выполнении внутренних полетов по маршрутам обслуживания воздушного движения;

в) оперативный дежурный органа противовоздушной обороны - в остальных случаях.

(см. текст в предыдущей редакции)

150. О решении, принятом в соответствии с пунктом 149 настоящих Федеральных правил, центры Единой системы и органы противовоздушной обороны извещают друг друга, а также пользователя воздушного пространства.

(см. текст в предыдущей редакции)

151. При незаконном пересечении государственной границы Российской Федерации, применении оружия и боевой техники Вооруженных Сил Российской Федерации по воздушному судну-нарушителю, а также при появлении в воздушном пространстве неопознанных воздушных судов и других материальных объектов в исключительных случаях органы противовоздушной обороны подают сигнал "Ковер", означающий требование немедленной посадки или вывода из соответствующего района всех воздушных судов, находящихся в воздухе, за исключением воздушных судов, привлекаемых для борьбы с воздушными судами-нарушителями и выполняющих задачи поиска и спасания.

(см. текст в предыдущей редакции)

Органы противовоздушной обороны доводят сигнал "Ковер", а также границы района действия указанного сигнала до соответствующих центров Единой системы.

(см. текст в предыдущей редакции)

Центры Единой системы немедленно принимают меры по выводу воздушных судов (их посадки) из района действия сигнала "Ковер".

(см. текст в предыдущей редакции)

152. В случае невыполнения экипажем воздушного судна-нарушителя команды органа обслуживания воздушного движения (управления полетами) о прекращении нарушения порядка использования воздушного пространства такая информация немедленно доводится до органов противовоздушной обороны. Органы противовоздушной обороны применяют меры к воздушному судну-нарушителю в соответствии с законодательством Российской Федерации.

Экипажи воздушных судов обязаны выполнять команды дежурных воздушных судов Вооруженных Сил Российской Федерации, применяемых для прекращения нарушения порядка использования воздушного пространства Российской Федерации.

В случае принуждения к посадке воздушного судна-нарушителя его посадка осуществляется на аэродром (вертодром, посадочную площадку), пригодный для посадки такого типа воздушного судна.

153. При возникновении угрозы безопасности полета, в том числе связанной с актом незаконного вмешательства на борту воздушного судна, экипаж подает сигнал "Бедствие". На воздушных судах, оборудованных системой сигнализации об опасности, при нападении на экипаж дополнительно подается сигнал "ССО". При получении от экипажа воздушного судна сигнала "Бедствие" и (или) "ССО" органы обслуживания воздушного движения (управления полетами) обязаны принять необходимые меры по оказанию помощи экипажу, терпящему бедствие, и немедленно передать в центры Единой системы, авиационные координационные центры поиска и спасания, а также в органы противовоздушной обороны данные о его местонахождении и другую необходимую информацию.

154. После выяснения причин нарушения порядка использования воздушного пространства Российской Федерации разрешение на дальнейшее выполнение международного полета или полета, связанного с пересечением более 2 зон Единой системы, принимает начальник дежурной смены главного центра Единой системы, а в остальных случаях - начальники дежурных смен зонального центра Единой системы.